NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylan2b GIF version

Theorem sylan2b 461
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.)
Hypotheses
Ref Expression
sylan2b.1 (φχ)
sylan2b.2 ((ψ χ) → θ)
Assertion
Ref Expression
sylan2b ((ψ φ) → θ)

Proof of Theorem sylan2b
StepHypRef Expression
1 sylan2b.1 . . 3 (φχ)
21biimpi 186 . 2 (φχ)
3 sylan2b.2 . 2 ((ψ χ) → θ)
42, 3sylan2 460 1 ((ψ φ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  syl2anb  465  bm1.1  2338  eqtr3  2372  morex  3021  psssstr  3376  reuss2  3536  reupick  3540  reximdva0  3562  rabsneu  3796  reiota2  4369  nnsucelr  4429  nndisjeq  4430  prepeano4  4452  lefinlteq  4464  ltlefin  4469  ncfinraise  4482  sfindbl  4531  nulnnn  4557  xpcan  5058  fnfco  5238  fun11iun  5306  tz6.12-1  5345  fnressn  5439  fndmeng  6047
  Copyright terms: Public domain W3C validator