New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylan2b | GIF version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2b.1 | ⊢ (φ ↔ χ) |
sylan2b.2 | ⊢ ((ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
sylan2b | ⊢ ((ψ ∧ φ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2b.1 | . . 3 ⊢ (φ ↔ χ) | |
2 | 1 | biimpi 186 | . 2 ⊢ (φ → χ) |
3 | sylan2b.2 | . 2 ⊢ ((ψ ∧ χ) → θ) | |
4 | 2, 3 | sylan2 460 | 1 ⊢ ((ψ ∧ φ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: syl2anb 465 bm1.1 2338 eqtr3 2372 morex 3021 psssstr 3376 reuss2 3536 reupick 3540 reximdva0 3562 rabsneu 3796 reiota2 4369 nnsucelr 4429 nndisjeq 4430 prepeano4 4452 lefinlteq 4464 ltlefin 4469 ncfinraise 4482 sfindbl 4531 nulnnn 4557 xpcan 5058 fnfco 5238 fun11iun 5306 tz6.12-1 5345 fnressn 5439 fndmeng 6047 |
Copyright terms: Public domain | W3C validator |