New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylan2b | GIF version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2b.1 | ⊢ (φ ↔ χ) |
sylan2b.2 | ⊢ ((ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
sylan2b | ⊢ ((ψ ∧ φ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2b.1 | . . 3 ⊢ (φ ↔ χ) | |
2 | 1 | biimpi 186 | . 2 ⊢ (φ → χ) |
3 | sylan2b.2 | . 2 ⊢ ((ψ ∧ χ) → θ) | |
4 | 2, 3 | sylan2 460 | 1 ⊢ ((ψ ∧ φ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: syl2anb 465 bm1.1 2338 eqtr3 2372 morex 3020 psssstr 3375 reuss2 3535 reupick 3539 reximdva0 3561 rabsneu 3795 reiota2 4368 nnsucelr 4428 nndisjeq 4429 prepeano4 4451 lefinlteq 4463 ltlefin 4468 ncfinraise 4481 sfindbl 4530 nulnnn 4556 xpcan 5057 fnfco 5237 fun11iun 5305 tz6.12-1 5344 fnressn 5438 fndmeng 6046 |
Copyright terms: Public domain | W3C validator |