New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralss | GIF version |
Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
ralss | ⊢ (A ⊆ B → (∀x ∈ A φ ↔ ∀x ∈ B (x ∈ A → φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3267 | . . . . 5 ⊢ (A ⊆ B → (x ∈ A → x ∈ B)) | |
2 | 1 | pm4.71rd 616 | . . . 4 ⊢ (A ⊆ B → (x ∈ A ↔ (x ∈ B ∧ x ∈ A))) |
3 | 2 | imbi1d 308 | . . 3 ⊢ (A ⊆ B → ((x ∈ A → φ) ↔ ((x ∈ B ∧ x ∈ A) → φ))) |
4 | impexp 433 | . . 3 ⊢ (((x ∈ B ∧ x ∈ A) → φ) ↔ (x ∈ B → (x ∈ A → φ))) | |
5 | 3, 4 | syl6bb 252 | . 2 ⊢ (A ⊆ B → ((x ∈ A → φ) ↔ (x ∈ B → (x ∈ A → φ)))) |
6 | 5 | ralbidv2 2636 | 1 ⊢ (A ⊆ B → (∀x ∈ A φ ↔ ∀x ∈ B (x ∈ A → φ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∀wral 2614 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |