New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > f1ococnv2 | GIF version |
Description: The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by set.mm contributors, 13-Dec-2003.) |
Ref | Expression |
---|---|
f1ococnv2 | ⊢ (F:A–1-1-onto→B → (F ∘ ◡F) = ( I ↾ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofun 5290 | . . 3 ⊢ (F:A–1-1-onto→B → Fun F) | |
2 | df-fun 4790 | . . . 4 ⊢ (Fun F ↔ (F ∘ ◡F) ⊆ I ) | |
3 | iss 5001 | . . . 4 ⊢ ((F ∘ ◡F) ⊆ I ↔ (F ∘ ◡F) = ( I ↾ dom (F ∘ ◡F))) | |
4 | 2, 3 | bitri 240 | . . 3 ⊢ (Fun F ↔ (F ∘ ◡F) = ( I ↾ dom (F ∘ ◡F))) |
5 | 1, 4 | sylib 188 | . 2 ⊢ (F:A–1-1-onto→B → (F ∘ ◡F) = ( I ↾ dom (F ∘ ◡F))) |
6 | df-dm 4788 | . . . . . 6 ⊢ dom F = ran ◡F | |
7 | dmcoeq 4975 | . . . . . 6 ⊢ (dom F = ran ◡F → dom (F ∘ ◡F) = dom ◡F) | |
8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ dom (F ∘ ◡F) = dom ◡F |
9 | dfrn4 4905 | . . . . 5 ⊢ ran F = dom ◡F | |
10 | 8, 9 | eqtr4i 2376 | . . . 4 ⊢ dom (F ∘ ◡F) = ran F |
11 | f1ofo 5294 | . . . . 5 ⊢ (F:A–1-1-onto→B → F:A–onto→B) | |
12 | forn 5273 | . . . . 5 ⊢ (F:A–onto→B → ran F = B) | |
13 | 11, 12 | syl 15 | . . . 4 ⊢ (F:A–1-1-onto→B → ran F = B) |
14 | 10, 13 | syl5eq 2397 | . . 3 ⊢ (F:A–1-1-onto→B → dom (F ∘ ◡F) = B) |
15 | 14 | reseq2d 4935 | . 2 ⊢ (F:A–1-1-onto→B → ( I ↾ dom (F ∘ ◡F)) = ( I ↾ B)) |
16 | 5, 15 | eqtrd 2385 | 1 ⊢ (F:A–1-1-onto→B → (F ∘ ◡F) = ( I ↾ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ⊆ wss 3258 ∘ ccom 4722 I cid 4764 ◡ccnv 4772 dom cdm 4773 ran crn 4774 ↾ cres 4775 Fun wfun 4776 –onto→wfo 4780 –1-1-onto→wf1o 4781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 |
This theorem is referenced by: f1ococnv1 5311 f1cocnv2 5314 enmap2lem5 6068 enmap1lem5 6074 |
Copyright terms: Public domain | W3C validator |