![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > f1orescnv | GIF version |
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.) |
Ref | Expression |
---|---|
f1orescnv | ⊢ ((Fun ◡F ∧ (F ↾ R):R–1-1-onto→P) → (◡F ↾ P):P–1-1-onto→R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 5299 | . . 3 ⊢ ((F ↾ R):R–1-1-onto→P → ◡(F ↾ R):P–1-1-onto→R) | |
2 | 1 | adantl 452 | . 2 ⊢ ((Fun ◡F ∧ (F ↾ R):R–1-1-onto→P) → ◡(F ↾ R):P–1-1-onto→R) |
3 | funcnvres 5165 | . . . 4 ⊢ (Fun ◡F → ◡(F ↾ R) = (◡F ↾ (F “ R))) | |
4 | dfima3 4951 | . . . . . 6 ⊢ (F “ R) = ran (F ↾ R) | |
5 | dff1o5 5295 | . . . . . . 7 ⊢ ((F ↾ R):R–1-1-onto→P ↔ ((F ↾ R):R–1-1→P ∧ ran (F ↾ R) = P)) | |
6 | 5 | simprbi 450 | . . . . . 6 ⊢ ((F ↾ R):R–1-1-onto→P → ran (F ↾ R) = P) |
7 | 4, 6 | syl5eq 2397 | . . . . 5 ⊢ ((F ↾ R):R–1-1-onto→P → (F “ R) = P) |
8 | 7 | reseq2d 4934 | . . . 4 ⊢ ((F ↾ R):R–1-1-onto→P → (◡F ↾ (F “ R)) = (◡F ↾ P)) |
9 | 3, 8 | sylan9eq 2405 | . . 3 ⊢ ((Fun ◡F ∧ (F ↾ R):R–1-1-onto→P) → ◡(F ↾ R) = (◡F ↾ P)) |
10 | f1oeq1 5281 | . . 3 ⊢ (◡(F ↾ R) = (◡F ↾ P) → (◡(F ↾ R):P–1-1-onto→R ↔ (◡F ↾ P):P–1-1-onto→R)) | |
11 | 9, 10 | syl 15 | . 2 ⊢ ((Fun ◡F ∧ (F ↾ R):R–1-1-onto→P) → (◡(F ↾ R):P–1-1-onto→R ↔ (◡F ↾ P):P–1-1-onto→R)) |
12 | 2, 11 | mpbid 201 | 1 ⊢ ((Fun ◡F ∧ (F ↾ R):R–1-1-onto→P) → (◡F ↾ P):P–1-1-onto→R) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 “ cima 4722 ◡ccnv 4771 ran crn 4773 ↾ cres 4774 Fun wfun 4775 –1-1→wf1 4778 –1-1-onto→wf1o 4780 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |