| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rexlimi | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rexlimi.1 | ⊢ Ⅎxψ |
| rexlimi.2 | ⊢ (x ∈ A → (φ → ψ)) |
| Ref | Expression |
|---|---|
| rexlimi | ⊢ (∃x ∈ A φ → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimi.2 | . . 3 ⊢ (x ∈ A → (φ → ψ)) | |
| 2 | 1 | rgen 2680 | . 2 ⊢ ∀x ∈ A (φ → ψ) |
| 3 | rexlimi.1 | . . 3 ⊢ Ⅎxψ | |
| 4 | 3 | r19.23 2730 | . 2 ⊢ (∀x ∈ A (φ → ψ) ↔ (∃x ∈ A φ → ψ)) |
| 5 | 2, 4 | mpbi 199 | 1 ⊢ (∃x ∈ A φ → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1544 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
| This theorem is referenced by: rexlimiv 2733 fun11iun 5306 |
| Copyright terms: Public domain | W3C validator |