New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.23v | GIF version |
Description: Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
r19.23v | ⊢ (∀x ∈ A (φ → ψ) ↔ (∃x ∈ A φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
2 | 1 | r19.23 2729 | 1 ⊢ (∀x ∈ A (φ → ψ) ↔ (∃x ∈ A φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wral 2614 ∃wrex 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2619 df-rex 2620 |
This theorem is referenced by: uniiunlem 3353 dfiin2g 4000 iunss 4007 nnadjoinpw 4521 funimass4 5368 dfnnc3 5885 |
Copyright terms: Public domain | W3C validator |