New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexlimiv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
rexlimiv.1 | ⊢ (x ∈ A → (φ → ψ)) |
Ref | Expression |
---|---|
rexlimiv | ⊢ (∃x ∈ A φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
2 | rexlimiv.1 | . 2 ⊢ (x ∈ A → (φ → ψ)) | |
3 | 1, 2 | rexlimi 2732 | 1 ⊢ (∃x ∈ A φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
This theorem is referenced by: rexlimiva 2734 rexlimivw 2735 rexlimivv 2744 r19.36av 2760 r19.44av 2768 r19.45av 2769 rexn0 3653 uniss2 3923 pwadjoin 4120 nnc0suc 4413 lefinlteq 4464 ssfin 4471 evennn 4507 oddnn 4508 sucoddeven 4512 evenodddisj 4517 eventfin 4518 oddtfin 4519 fnasrn 5418 ecoptocl 5997 mapsn 6027 dflec3 6222 lenc 6224 taddc 6230 ce0tb 6239 ce0lenc1 6240 ncfin 6248 nncdiv3 6278 nchoicelem1 6290 nchoicelem2 6291 nchoicelem12 6301 |
Copyright terms: Public domain | W3C validator |