| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rexn0 | GIF version | ||
| Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
| Ref | Expression |
|---|---|
| rexn0 | ⊢ (∃x ∈ A φ → A ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 3557 | . . 3 ⊢ (x ∈ A → A ≠ ∅) | |
| 2 | 1 | a1d 22 | . 2 ⊢ (x ∈ A → (φ → A ≠ ∅)) |
| 3 | 2 | rexlimiv 2733 | 1 ⊢ (∃x ∈ A φ → A ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 1710 ≠ wne 2517 ∃wrex 2616 ∅c0 3551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |