New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  dminss GIF version

Theorem dminss 5041
 Description: An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising." (Contributed by set.mm contributors, 11-Aug-2004.)
Assertion
Ref Expression
dminss (dom RA) (R “ (RA))

Proof of Theorem dminss
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rspe 2675 . . . . . . 7 ((x A xRy) → x A xRy)
2 elima 4754 . . . . . . 7 (y (RA) ↔ x A xRy)
31, 2sylibr 203 . . . . . 6 ((x A xRy) → y (RA))
43ancoms 439 . . . . 5 ((xRy x A) → y (RA))
5 brcnv 4892 . . . . . . 7 (yRxxRy)
65biimpri 197 . . . . . 6 (xRyyRx)
76adantr 451 . . . . 5 ((xRy x A) → yRx)
84, 7jca 518 . . . 4 ((xRy x A) → (y (RA) yRx))
98eximi 1576 . . 3 (y(xRy x A) → y(y (RA) yRx))
10 eldm 4898 . . . . 5 (x dom Ry xRy)
1110anbi1i 676 . . . 4 ((x dom R x A) ↔ (y xRy x A))
12 elin 3219 . . . 4 (x (dom RA) ↔ (x dom R x A))
13 19.41v 1901 . . . 4 (y(xRy x A) ↔ (y xRy x A))
1411, 12, 133bitr4i 268 . . 3 (x (dom RA) ↔ y(xRy x A))
15 elima2 4755 . . 3 (x (R “ (RA)) ↔ y(y (RA) yRx))
169, 14, 153imtr4i 257 . 2 (x (dom RA) → x (R “ (RA)))
1716ssriv 3277 1 (dom RA) (R “ (RA))
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 358  ∃wex 1541   ∈ wcel 1710  ∃wrex 2615   ∩ cin 3208   ⊆ wss 3257   class class class wbr 4639   “ cima 4722  ◡ccnv 4771  dom cdm 4772 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-ima 4727  df-cnv 4785  df-rn 4786  df-dm 4787 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator