New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rspesbca | GIF version |
Description: Existence form of rspsbca 3126. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
rspesbca | ⊢ ((A ∈ B ∧ [̣A / x]̣φ) → ∃x ∈ B φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3050 | . . 3 ⊢ (y = A → ([y / x]φ ↔ [̣A / x]̣φ)) | |
2 | 1 | rspcev 2956 | . 2 ⊢ ((A ∈ B ∧ [̣A / x]̣φ) → ∃y ∈ B [y / x]φ) |
3 | cbvrexsv 2848 | . 2 ⊢ (∃x ∈ B φ ↔ ∃y ∈ B [y / x]φ) | |
4 | 2, 3 | sylibr 203 | 1 ⊢ ((A ∈ B ∧ [̣A / x]̣φ) → ∃x ∈ B φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 [wsb 1648 ∈ wcel 1710 ∃wrex 2616 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 |
This theorem is referenced by: spesbc 3128 |
Copyright terms: Public domain | W3C validator |