New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rspcev | GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
rspcev | ⊢ ((A ∈ B ∧ ψ) → ∃x ∈ B φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
2 | rspcv.1 | . 2 ⊢ (x = A → (φ ↔ ψ)) | |
3 | 1, 2 | rspce 2951 | 1 ⊢ ((A ∈ B ∧ ψ) → ∃x ∈ B φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 |
This theorem is referenced by: rspc2ev 2964 rspc3ev 2966 reu6i 3028 rspesbca 3127 pwadjoin 4120 eqpw1uni 4331 nnc0suc 4413 elsuci 4415 0fin 4424 nnsucelr 4429 snfi 4432 lefinaddc 4451 nulge 4457 leltfintr 4459 ltfintr 4460 ltfinp1 4463 lefinlteq 4464 lefinrflx 4468 ltlefin 4469 ssfin 4471 ncfinraise 4482 ncfinlower 4484 tfinltfinlem1 4501 0ceven 4506 sucoddeven 4512 eventfin 4518 oddtfin 4519 nnpweq 4524 vfinspss 4552 phi11lem1 4596 foco2 5427 f1elima 5475 f1oiso2 5501 clos1conn 5880 clos1basesuc 5883 ecelqsg 5980 ncspw1eu 6160 pw1eltc 6163 nntccl 6171 lecidg 6197 lecncvg 6200 dflec2 6211 dflec3 6222 lenc 6224 letc 6232 ce0t 6233 ce0lenc1 6240 ncfin 6248 nmembers1lem3 6271 nncdiv3 6278 nchoicelem13 6302 nchoicelem17 6306 nchoicelem19 6308 nchoice 6309 frecsuc 6323 |
Copyright terms: Public domain | W3C validator |