New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sb4b | GIF version |
Description: Simplified definition of substitution when variables are distinct. (Contributed by NM, 27-May-1997.) |
Ref | Expression |
---|---|
sb4b | ⊢ (¬ ∀x x = y → ([y / x]φ ↔ ∀x(x = y → φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb4 2053 | . 2 ⊢ (¬ ∀x x = y → ([y / x]φ → ∀x(x = y → φ))) | |
2 | sb2 2023 | . 2 ⊢ (∀x(x = y → φ) → [y / x]φ) | |
3 | 1, 2 | impbid1 194 | 1 ⊢ (¬ ∀x x = y → ([y / x]φ ↔ ∀x(x = y → φ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: nfsb4t 2080 sbcom 2089 sbcom2 2114 |
Copyright terms: Public domain | W3C validator |