| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ax11vALT | GIF version | ||
| Description: Alternate proof of ax11v 2096 that avoids Theorem ax16 2045 and is proved directly from ax-11 1746 rather than via ax11o 1994. (Contributed by Jim Kingdon, 15-Dec-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| ax11vALT | ⊢ (x = y → (φ → ∀x(x = y → φ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a9e 1951 | . 2 ⊢ ∃z z = y | |
| 2 | ax-17 1616 | . . . . 5 ⊢ (φ → ∀zφ) | |
| 3 | ax-11 1746 | . . . . 5 ⊢ (x = z → (∀zφ → ∀x(x = z → φ))) | |
| 4 | 2, 3 | syl5 28 | . . . 4 ⊢ (x = z → (φ → ∀x(x = z → φ))) |
| 5 | equequ2 1686 | . . . . 5 ⊢ (z = y → (x = z ↔ x = y)) | |
| 6 | 5 | imbi1d 308 | . . . . . . 7 ⊢ (z = y → ((x = z → φ) ↔ (x = y → φ))) |
| 7 | 6 | albidv 1625 | . . . . . 6 ⊢ (z = y → (∀x(x = z → φ) ↔ ∀x(x = y → φ))) |
| 8 | 7 | imbi2d 307 | . . . . 5 ⊢ (z = y → ((φ → ∀x(x = z → φ)) ↔ (φ → ∀x(x = y → φ)))) |
| 9 | 5, 8 | imbi12d 311 | . . . 4 ⊢ (z = y → ((x = z → (φ → ∀x(x = z → φ))) ↔ (x = y → (φ → ∀x(x = y → φ))))) |
| 10 | 4, 9 | mpbii 202 | . . 3 ⊢ (z = y → (x = y → (φ → ∀x(x = y → φ)))) |
| 11 | 10 | exlimiv 1634 | . 2 ⊢ (∃z z = y → (x = y → (φ → ∀x(x = y → φ)))) |
| 12 | 1, 11 | ax-mp 5 | 1 ⊢ (x = y → (φ → ∀x(x = y → φ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 = wceq 1642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |