New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > alexeq | GIF version |
Description: Two ways to express substitution of A for x in φ. (Contributed by NM, 2-Mar-1995.) |
Ref | Expression |
---|---|
alexeq.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
alexeq | ⊢ (∀x(x = A → φ) ↔ ∃x(x = A ∧ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alexeq.1 | . . 3 ⊢ A ∈ V | |
2 | eqeq2 2362 | . . . . 5 ⊢ (y = A → (x = y ↔ x = A)) | |
3 | 2 | anbi1d 685 | . . . 4 ⊢ (y = A → ((x = y ∧ φ) ↔ (x = A ∧ φ))) |
4 | 3 | exbidv 1626 | . . 3 ⊢ (y = A → (∃x(x = y ∧ φ) ↔ ∃x(x = A ∧ φ))) |
5 | 2 | imbi1d 308 | . . . 4 ⊢ (y = A → ((x = y → φ) ↔ (x = A → φ))) |
6 | 5 | albidv 1625 | . . 3 ⊢ (y = A → (∀x(x = y → φ) ↔ ∀x(x = A → φ))) |
7 | sb56 2098 | . . 3 ⊢ (∃x(x = y ∧ φ) ↔ ∀x(x = y → φ)) | |
8 | 1, 4, 6, 7 | vtoclb 2913 | . 2 ⊢ (∃x(x = A ∧ φ) ↔ ∀x(x = A → φ)) |
9 | 8 | bicomi 193 | 1 ⊢ (∀x(x = A → φ) ↔ ∃x(x = A ∧ φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: ceqex 2970 |
Copyright terms: Public domain | W3C validator |