Proof of Theorem sbccomlem
Step | Hyp | Ref
| Expression |
1 | | excom 1741 |
. . . 4
⊢ (∃x∃y(x = A ∧ (y = B ∧ φ)) ↔ ∃y∃x(x = A ∧ (y = B ∧ φ))) |
2 | | exdistr 1906 |
. . . 4
⊢ (∃x∃y(x = A ∧ (y = B ∧ φ)) ↔ ∃x(x = A ∧ ∃y(y = B ∧ φ))) |
3 | | an12 772 |
. . . . . . 7
⊢ ((x = A ∧ (y = B ∧ φ)) ↔ (y = B ∧ (x = A ∧ φ))) |
4 | 3 | exbii 1582 |
. . . . . 6
⊢ (∃x(x = A ∧ (y = B ∧ φ)) ↔ ∃x(y = B ∧ (x = A ∧ φ))) |
5 | | 19.42v 1905 |
. . . . . 6
⊢ (∃x(y = B ∧ (x = A ∧ φ)) ↔ (y = B ∧ ∃x(x = A ∧ φ))) |
6 | 4, 5 | bitri 240 |
. . . . 5
⊢ (∃x(x = A ∧ (y = B ∧ φ)) ↔ (y = B ∧ ∃x(x = A ∧ φ))) |
7 | 6 | exbii 1582 |
. . . 4
⊢ (∃y∃x(x = A ∧ (y = B ∧ φ)) ↔ ∃y(y = B ∧ ∃x(x = A ∧ φ))) |
8 | 1, 2, 7 | 3bitr3i 266 |
. . 3
⊢ (∃x(x = A ∧ ∃y(y = B ∧ φ)) ↔ ∃y(y = B ∧ ∃x(x = A ∧ φ))) |
9 | | sbc5 3071 |
. . 3
⊢ ([̣A / x]̣∃y(y = B ∧ φ) ↔ ∃x(x = A ∧ ∃y(y = B ∧ φ))) |
10 | | sbc5 3071 |
. . 3
⊢ ([̣B / y]̣∃x(x = A ∧ φ) ↔ ∃y(y = B ∧ ∃x(x = A ∧ φ))) |
11 | 8, 9, 10 | 3bitr4i 268 |
. 2
⊢ ([̣A / x]̣∃y(y = B ∧ φ) ↔ [̣B / y]̣∃x(x = A ∧ φ)) |
12 | | sbc5 3071 |
. . 3
⊢ ([̣B / y]̣φ
↔ ∃y(y = B ∧ φ)) |
13 | 12 | sbcbii 3102 |
. 2
⊢ ([̣A / x]̣[̣B
/ y]̣φ ↔ [̣A / x]̣∃y(y = B ∧ φ)) |
14 | | sbc5 3071 |
. . 3
⊢ ([̣A / x]̣φ
↔ ∃x(x = A ∧ φ)) |
15 | 14 | sbcbii 3102 |
. 2
⊢ ([̣B / y]̣[̣A
/ x]̣φ ↔ [̣B / y]̣∃x(x = A ∧ φ)) |
16 | 11, 13, 15 | 3bitr4i 268 |
1
⊢ ([̣A / x]̣[̣B
/ y]̣φ ↔ [̣B / y]̣[̣A
/ x]̣φ) |