New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbeq2d | GIF version |
Description: Formula-building deduction rule for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2d.1 | ⊢ Ⅎxφ |
csbeq2d.2 | ⊢ (φ → B = C) |
Ref | Expression |
---|---|
csbeq2d | ⊢ (φ → [A / x]B = [A / x]C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2d.1 | . . . 4 ⊢ Ⅎxφ | |
2 | csbeq2d.2 | . . . . 5 ⊢ (φ → B = C) | |
3 | 2 | eleq2d 2420 | . . . 4 ⊢ (φ → (y ∈ B ↔ y ∈ C)) |
4 | 1, 3 | sbcbid 3100 | . . 3 ⊢ (φ → ([̣A / x]̣y ∈ B ↔ [̣A / x]̣y ∈ C)) |
5 | 4 | abbidv 2468 | . 2 ⊢ (φ → {y ∣ [̣A / x]̣y ∈ B} = {y ∣ [̣A / x]̣y ∈ C}) |
6 | df-csb 3138 | . 2 ⊢ [A / x]B = {y ∣ [̣A / x]̣y ∈ B} | |
7 | df-csb 3138 | . 2 ⊢ [A / x]C = {y ∣ [̣A / x]̣y ∈ C} | |
8 | 5, 6, 7 | 3eqtr4g 2410 | 1 ⊢ (φ → [A / x]B = [A / x]C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 {cab 2339 [̣wsbc 3047 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: csbeq2dv 3162 |
Copyright terms: Public domain | W3C validator |