NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbeq2d GIF version

Theorem csbeq2d 3161
Description: Formula-building deduction rule for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
csbeq2d.1 xφ
csbeq2d.2 (φB = C)
Assertion
Ref Expression
csbeq2d (φ[A / x]B = [A / x]C)

Proof of Theorem csbeq2d
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 csbeq2d.1 . . . 4 xφ
2 csbeq2d.2 . . . . 5 (φB = C)
32eleq2d 2420 . . . 4 (φ → (y By C))
41, 3sbcbid 3100 . . 3 (φ → ([̣A / xy B ↔ [̣A / xy C))
54abbidv 2468 . 2 (φ → {y A / xy B} = {y A / xy C})
6 df-csb 3138 . 2 [A / x]B = {y A / xy B}
7 df-csb 3138 . 2 [A / x]C = {y A / xy C}
85, 6, 73eqtr4g 2410 1 (φ[A / x]B = [A / x]C)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1544   = wceq 1642   wcel 1710  {cab 2339  wsbc 3047  [csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-sbc 3048  df-csb 3138
This theorem is referenced by:  csbeq2dv  3162
  Copyright terms: Public domain W3C validator