New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcbidv | GIF version |
Description: Formula-building deduction rule for class substitution. (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbcbidv.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
sbcbidv | ⊢ (φ → ([̣A / x]̣ψ ↔ [̣A / x]̣χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
2 | sbcbidv.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | sbcbid 3100 | 1 ⊢ (φ → ([̣A / x]̣ψ ↔ [̣A / x]̣χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-sbc 3048 |
This theorem is referenced by: sbcbii 3102 csbcomg 3160 opelopabsb 4698 opelopabf 4712 |
Copyright terms: Public domain | W3C validator |