New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elrabsf | GIF version |
Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2994 has implicit substitution). The hypothesis specifies that x must not be a free variable in B. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
elrabsf.1 | ⊢ ℲxB |
Ref | Expression |
---|---|
elrabsf | ⊢ (A ∈ {x ∈ B ∣ φ} ↔ (A ∈ B ∧ [̣A / x]̣φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3049 | . 2 ⊢ (y = A → ([̣y / x]̣φ ↔ [̣A / x]̣φ)) | |
2 | elrabsf.1 | . . 3 ⊢ ℲxB | |
3 | nfcv 2490 | . . 3 ⊢ ℲyB | |
4 | nfv 1619 | . . 3 ⊢ Ⅎyφ | |
5 | nfsbc1v 3066 | . . 3 ⊢ Ⅎx[̣y / x]̣φ | |
6 | sbceq1a 3057 | . . 3 ⊢ (x = y → (φ ↔ [̣y / x]̣φ)) | |
7 | 2, 3, 4, 5, 6 | cbvrab 2858 | . 2 ⊢ {x ∈ B ∣ φ} = {y ∈ B ∣ [̣y / x]̣φ} |
8 | 1, 7 | elrab2 2997 | 1 ⊢ (A ∈ {x ∈ B ∣ φ} ↔ (A ∈ B ∧ [̣A / x]̣φ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∈ wcel 1710 Ⅎwnfc 2477 {crab 2619 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-sbc 3048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |