NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elrabsf GIF version

Theorem elrabsf 3085
Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2994 has implicit substitution). The hypothesis specifies that x must not be a free variable in B. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
elrabsf.1 xB
Assertion
Ref Expression
elrabsf (A {x B φ} ↔ (A B A / xφ))

Proof of Theorem elrabsf
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3049 . 2 (y = A → ([̣y / xφ ↔ [̣A / xφ))
2 elrabsf.1 . . 3 xB
3 nfcv 2490 . . 3 yB
4 nfv 1619 . . 3 yφ
5 nfsbc1v 3066 . . 3 xy / xφ
6 sbceq1a 3057 . . 3 (x = y → (φ ↔ [̣y / xφ))
72, 3, 4, 5, 6cbvrab 2858 . 2 {x B φ} = {y B y / xφ}
81, 7elrab2 2997 1 (A {x B φ} ↔ (A B A / xφ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   wcel 1710  wnfc 2477  {crab 2619  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rab 2624  df-v 2862  df-sbc 3048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator