| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbcie2g | GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3081 avoids a disjointness condition on x, A by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcie2g.1 | ⊢ (x = y → (φ ↔ ψ)) |
| sbcie2g.2 | ⊢ (y = A → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| sbcie2g | ⊢ (A ∈ V → ([̣A / x]̣φ ↔ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 3049 | . 2 ⊢ (y = A → ([̣y / x]̣φ ↔ [̣A / x]̣φ)) | |
| 2 | sbcie2g.2 | . 2 ⊢ (y = A → (ψ ↔ χ)) | |
| 3 | sbsbc 3051 | . . 3 ⊢ ([y / x]φ ↔ [̣y / x]̣φ) | |
| 4 | nfv 1619 | . . . 4 ⊢ Ⅎxψ | |
| 5 | sbcie2g.1 | . . . 4 ⊢ (x = y → (φ ↔ ψ)) | |
| 6 | 4, 5 | sbie 2038 | . . 3 ⊢ ([y / x]φ ↔ ψ) |
| 7 | 3, 6 | bitr3i 242 | . 2 ⊢ ([̣y / x]̣φ ↔ ψ) |
| 8 | 1, 2, 7 | vtoclbg 2916 | 1 ⊢ (A ∈ V → ([̣A / x]̣φ ↔ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 [wsb 1648 ∈ wcel 1710 [̣wsbc 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
| This theorem is referenced by: csbie2g 3183 brab1 4685 |
| Copyright terms: Public domain | W3C validator |