New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vtoclbg | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
vtoclbg.1 | ⊢ (x = A → (φ ↔ χ)) |
vtoclbg.2 | ⊢ (x = A → (ψ ↔ θ)) |
vtoclbg.3 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
vtoclbg | ⊢ (A ∈ V → (χ ↔ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclbg.1 | . . 3 ⊢ (x = A → (φ ↔ χ)) | |
2 | vtoclbg.2 | . . 3 ⊢ (x = A → (ψ ↔ θ)) | |
3 | 1, 2 | bibi12d 312 | . 2 ⊢ (x = A → ((φ ↔ ψ) ↔ (χ ↔ θ))) |
4 | vtoclbg.3 | . 2 ⊢ (φ ↔ ψ) | |
5 | 3, 4 | vtoclg 2915 | 1 ⊢ (A ∈ V → (χ ↔ θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: pm13.183 2980 sbc8g 3054 sbc2or 3055 sbcco 3069 sbc5 3071 sbcie2g 3080 eqsbc1 3086 sbcng 3087 sbcimg 3088 sbcan 3089 sbcang 3090 sbcor 3091 sbcorg 3092 sbcbig 3093 sbcal 3094 sbcalg 3095 sbcex2 3096 sbcexg 3097 sbc3ang 3105 sbcel1gv 3106 sbcel2gv 3107 sbcralg 3121 sbcrexg 3122 sbcreug 3123 sbcel12g 3152 sbceqg 3153 csbiebg 3176 elpwg 3730 snssg 3845 elintg 3935 elintrabg 3940 preq12bg 4129 sbcbrg 4686 opbr1st 5502 opbr2nd 5503 elfix 5788 otelins2 5792 otelins3 5793 elfunsg 5831 brfns 5834 |
Copyright terms: Public domain | W3C validator |