New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcbii | GIF version |
Description: Formula-building inference rule for class substitution. (Contributed by NM, 11-Nov-2005.) |
Ref | Expression |
---|---|
sbcbii.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
sbcbii | ⊢ ([̣A / x]̣φ ↔ [̣A / x]̣ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbii.1 | . . . 4 ⊢ (φ ↔ ψ) | |
2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → (φ ↔ ψ)) |
3 | 2 | sbcbidv 3101 | . 2 ⊢ ( ⊤ → ([̣A / x]̣φ ↔ [̣A / x]̣ψ)) |
4 | 3 | trud 1323 | 1 ⊢ ([̣A / x]̣φ ↔ [̣A / x]̣ψ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ⊤ wtru 1316 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-sbc 3048 |
This theorem is referenced by: sbcbiiOLD 3103 eqsbc2 3104 sbccomlem 3117 sbccom 3118 sbcrext 3120 sbcabel 3124 csbco 3146 sbcnel12g 3154 sbcne12g 3155 sbccsbg 3165 sbccsb2g 3166 csbnestgf 3185 csbabg 3198 sbcss 3661 inopab 4863 eqerlem 5961 |
Copyright terms: Public domain | W3C validator |