| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbequ1 | GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ1 | ⊢ (x = y → (φ → [y / x]φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.4 544 | . . 3 ⊢ ((x = y ∧ φ) → (x = y → φ)) | |
| 2 | 19.8a 1756 | . . 3 ⊢ ((x = y ∧ φ) → ∃x(x = y ∧ φ)) | |
| 3 | df-sb 1649 | . . 3 ⊢ ([y / x]φ ↔ ((x = y → φ) ∧ ∃x(x = y ∧ φ))) | |
| 4 | 1, 2, 3 | sylanbrc 645 | . 2 ⊢ ((x = y ∧ φ) → [y / x]φ) |
| 5 | 4 | ex 423 | 1 ⊢ (x = y → (φ → [y / x]φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 |
| This theorem is referenced by: sbequ12 1919 dfsb2 2055 sbequi 2059 sbn 2062 sbi1 2063 sb6rf 2091 mo 2226 |
| Copyright terms: Public domain | W3C validator |