Step | Hyp | Ref
| Expression |
1 | | sbex 2128 |
. . 3
⊢ ([y / x]∃v(v = {z ∣ φ} ∧ v ∈ A) ↔
∃v[y / x](v = {z ∣ φ} ∧
v ∈
A)) |
2 | | sban 2069 |
. . . . 5
⊢ ([y / x](v = {z ∣ φ} ∧ v ∈ A) ↔
([y / x]v = {z ∣ φ} ∧
[y / x]v ∈ A)) |
3 | | nfv 1619 |
. . . . . . . . . 10
⊢ Ⅎx z ∈ v |
4 | 3 | sbf 2026 |
. . . . . . . . 9
⊢ ([y / x]z ∈ v ↔ z ∈ v) |
5 | 4 | sbrbis 2073 |
. . . . . . . 8
⊢ ([y / x](z ∈ v ↔ φ)
↔ (z ∈ v ↔
[y / x]φ)) |
6 | 5 | sbalv 2129 |
. . . . . . 7
⊢ ([y / x]∀z(z ∈ v ↔ φ)
↔ ∀z(z ∈ v ↔
[y / x]φ)) |
7 | | abeq2 2459 |
. . . . . . . 8
⊢ (v = {z ∣ φ}
↔ ∀z(z ∈ v ↔
φ)) |
8 | 7 | sbbii 1653 |
. . . . . . 7
⊢ ([y / x]v = {z ∣ φ}
↔ [y / x]∀z(z ∈ v ↔
φ)) |
9 | | abeq2 2459 |
. . . . . . 7
⊢ (v = {z ∣ [y /
x]φ} ↔ ∀z(z ∈ v ↔ [y /
x]φ)) |
10 | 6, 8, 9 | 3bitr4i 268 |
. . . . . 6
⊢ ([y / x]v = {z ∣ φ}
↔ v = {z ∣ [y / x]φ}) |
11 | | sbabel.1 |
. . . . . . . 8
⊢
ℲxA |
12 | 11 | nfcri 2484 |
. . . . . . 7
⊢ Ⅎx v ∈ A |
13 | 12 | sbf 2026 |
. . . . . 6
⊢ ([y / x]v ∈ A ↔ v ∈ A) |
14 | 10, 13 | anbi12i 678 |
. . . . 5
⊢ (([y / x]v = {z ∣ φ} ∧ [y / x]v ∈ A) ↔
(v = {z
∣ [y /
x]φ} ∧
v ∈
A)) |
15 | 2, 14 | bitri 240 |
. . . 4
⊢ ([y / x](v = {z ∣ φ} ∧ v ∈ A) ↔
(v = {z
∣ [y /
x]φ} ∧
v ∈
A)) |
16 | 15 | exbii 1582 |
. . 3
⊢ (∃v[y / x](v = {z ∣ φ} ∧ v ∈ A) ↔
∃v(v = {z ∣ [y / x]φ} ∧
v ∈
A)) |
17 | 1, 16 | bitri 240 |
. 2
⊢ ([y / x]∃v(v = {z ∣ φ} ∧ v ∈ A) ↔
∃v(v = {z ∣ [y / x]φ} ∧
v ∈
A)) |
18 | | df-clel 2349 |
. . 3
⊢ ({z ∣ φ} ∈
A ↔ ∃v(v = {z ∣ φ} ∧ v ∈ A)) |
19 | 18 | sbbii 1653 |
. 2
⊢ ([y / x]{z ∣ φ} ∈
A ↔ [y / x]∃v(v = {z ∣ φ} ∧ v ∈ A)) |
20 | | df-clel 2349 |
. 2
⊢ ({z ∣ [y / x]φ} ∈
A ↔ ∃v(v = {z ∣ [y /
x]φ} ∧
v ∈
A)) |
21 | 17, 19, 20 | 3bitr4i 268 |
1
⊢ ([y / x]{z ∣ φ} ∈
A ↔ {z ∣ [y / x]φ} ∈
A) |