New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbmo | GIF version |
Description: Substitution into "at most one". (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
sbmo | ⊢ ([y / x]∃*zφ ↔ ∃*z[y / x]φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbex 2128 | . . 3 ⊢ ([y / x]∃w∀z(φ → z = w) ↔ ∃w[y / x]∀z(φ → z = w)) | |
2 | nfv 1619 | . . . . . 6 ⊢ Ⅎx z = w | |
3 | 2 | sblim 2068 | . . . . 5 ⊢ ([y / x](φ → z = w) ↔ ([y / x]φ → z = w)) |
4 | 3 | sbalv 2129 | . . . 4 ⊢ ([y / x]∀z(φ → z = w) ↔ ∀z([y / x]φ → z = w)) |
5 | 4 | exbii 1582 | . . 3 ⊢ (∃w[y / x]∀z(φ → z = w) ↔ ∃w∀z([y / x]φ → z = w)) |
6 | 1, 5 | bitri 240 | . 2 ⊢ ([y / x]∃w∀z(φ → z = w) ↔ ∃w∀z([y / x]φ → z = w)) |
7 | nfv 1619 | . . . 4 ⊢ Ⅎwφ | |
8 | 7 | mo2 2233 | . . 3 ⊢ (∃*zφ ↔ ∃w∀z(φ → z = w)) |
9 | 8 | sbbii 1653 | . 2 ⊢ ([y / x]∃*zφ ↔ [y / x]∃w∀z(φ → z = w)) |
10 | nfv 1619 | . . 3 ⊢ Ⅎw[y / x]φ | |
11 | 10 | mo2 2233 | . 2 ⊢ (∃*z[y / x]φ ↔ ∃w∀z([y / x]φ → z = w)) |
12 | 6, 9, 11 | 3bitr4i 268 | 1 ⊢ ([y / x]∃*zφ ↔ ∃*z[y / x]φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 = wceq 1642 [wsb 1648 ∃*wmo 2205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |