New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbex | GIF version |
Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) |
Ref | Expression |
---|---|
sbex | ⊢ ([z / y]∃xφ ↔ ∃x[z / y]φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbn 2062 | . . 3 ⊢ ([z / y] ¬ ∀x ¬ φ ↔ ¬ [z / y]∀x ¬ φ) | |
2 | sbal 2127 | . . . 4 ⊢ ([z / y]∀x ¬ φ ↔ ∀x[z / y] ¬ φ) | |
3 | sbn 2062 | . . . . 5 ⊢ ([z / y] ¬ φ ↔ ¬ [z / y]φ) | |
4 | 3 | albii 1566 | . . . 4 ⊢ (∀x[z / y] ¬ φ ↔ ∀x ¬ [z / y]φ) |
5 | 2, 4 | bitri 240 | . . 3 ⊢ ([z / y]∀x ¬ φ ↔ ∀x ¬ [z / y]φ) |
6 | 1, 5 | xchbinx 301 | . 2 ⊢ ([z / y] ¬ ∀x ¬ φ ↔ ¬ ∀x ¬ [z / y]φ) |
7 | df-ex 1542 | . . 3 ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) | |
8 | 7 | sbbii 1653 | . 2 ⊢ ([z / y]∃xφ ↔ [z / y] ¬ ∀x ¬ φ) |
9 | df-ex 1542 | . 2 ⊢ (∃x[z / y]φ ↔ ¬ ∀x ¬ [z / y]φ) | |
10 | 6, 8, 9 | 3bitr4i 268 | 1 ⊢ ([z / y]∃xφ ↔ ∃x[z / y]φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∀wal 1540 ∃wex 1541 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbmo 2234 sbabel 2516 sbcex2 3096 sbcexg 3097 |
Copyright terms: Public domain | W3C validator |