| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbex | GIF version | ||
| Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbex | ⊢ ([z / y]∃xφ ↔ ∃x[z / y]φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbn 2062 | . . 3 ⊢ ([z / y] ¬ ∀x ¬ φ ↔ ¬ [z / y]∀x ¬ φ) | |
| 2 | sbal 2127 | . . . 4 ⊢ ([z / y]∀x ¬ φ ↔ ∀x[z / y] ¬ φ) | |
| 3 | sbn 2062 | . . . . 5 ⊢ ([z / y] ¬ φ ↔ ¬ [z / y]φ) | |
| 4 | 3 | albii 1566 | . . . 4 ⊢ (∀x[z / y] ¬ φ ↔ ∀x ¬ [z / y]φ) |
| 5 | 2, 4 | bitri 240 | . . 3 ⊢ ([z / y]∀x ¬ φ ↔ ∀x ¬ [z / y]φ) |
| 6 | 1, 5 | xchbinx 301 | . 2 ⊢ ([z / y] ¬ ∀x ¬ φ ↔ ¬ ∀x ¬ [z / y]φ) |
| 7 | df-ex 1542 | . . 3 ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) | |
| 8 | 7 | sbbii 1653 | . 2 ⊢ ([z / y]∃xφ ↔ [z / y] ¬ ∀x ¬ φ) |
| 9 | df-ex 1542 | . 2 ⊢ (∃x[z / y]φ ↔ ¬ ∀x ¬ [z / y]φ) | |
| 10 | 6, 8, 9 | 3bitr4i 268 | 1 ⊢ ([z / y]∃xφ ↔ ∃x[z / y]φ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 ∀wal 1540 ∃wex 1541 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: sbmo 2234 sbabel 2516 sbcex2 3096 sbcexg 3097 |
| Copyright terms: Public domain | W3C validator |