Proof of Theorem ncfindi
Step | Hyp | Ref
| Expression |
1 | | simp1l 979 |
. . . 4
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ V ∈ Fin
) |
2 | | simp1r 980 |
. . . . 5
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ A ∈ V) |
3 | | simp2 956 |
. . . . 5
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ B ∈ W) |
4 | | unexg 4102 |
. . . . 5
⊢ ((A ∈ V ∧ B ∈ W) → (A
∪ B) ∈ V) |
5 | 2, 3, 4 | syl2anc 642 |
. . . 4
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ (A ∪ B) ∈
V) |
6 | | ncfinprop 4475 |
. . . 4
⊢ ((V ∈ Fin ∧ (A ∪
B) ∈ V)
→ ( Ncfin (A ∪ B) ∈ Nn ∧ (A ∪
B) ∈
Ncfin (A ∪ B))) |
7 | 1, 5, 6 | syl2anc 642 |
. . 3
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ ( Ncfin (A ∪ B) ∈ Nn ∧ (A ∪
B) ∈
Ncfin (A ∪ B))) |
8 | 7 | simpld 445 |
. 2
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ Ncfin (A ∪ B) ∈ Nn
) |
9 | | ncfinprop 4475 |
. . . . 5
⊢ ((V ∈ Fin ∧ A ∈ V) → (
Ncfin A ∈ Nn ∧ A ∈ Ncfin A)) |
10 | 1, 2, 9 | syl2anc 642 |
. . . 4
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ ( Ncfin A ∈ Nn ∧ A ∈ Ncfin A)) |
11 | 10 | simpld 445 |
. . 3
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ Ncfin A ∈ Nn ) |
12 | | ncfinprop 4475 |
. . . . 5
⊢ ((V ∈ Fin ∧ B ∈ W) → (
Ncfin B ∈ Nn ∧ B ∈ Ncfin B)) |
13 | 1, 3, 12 | syl2anc 642 |
. . . 4
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ ( Ncfin B ∈ Nn ∧ B ∈ Ncfin B)) |
14 | 13 | simpld 445 |
. . 3
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ Ncfin B ∈ Nn ) |
15 | | nncaddccl 4420 |
. . 3
⊢ (( Ncfin A
∈ Nn ∧ Ncfin
B ∈ Nn ) → ( Ncfin A
+c Ncfin B) ∈ Nn ) |
16 | 11, 14, 15 | syl2anc 642 |
. 2
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ ( Ncfin A +c Ncfin B)
∈ Nn
) |
17 | 7 | simprd 449 |
. 2
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ (A ∪ B) ∈ Ncfin (A
∪ B)) |
18 | 10 | simprd 449 |
. . 3
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ A ∈ Ncfin
A) |
19 | 13 | simprd 449 |
. . 3
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ B ∈ Ncfin
B) |
20 | | simp3 957 |
. . 3
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ (A ∩ B) = ∅) |
21 | | eladdci 4400 |
. . 3
⊢ ((A ∈ Ncfin A
∧ B ∈ Ncfin
B ∧
(A ∩ B) = ∅) →
(A ∪ B) ∈ ( Ncfin A
+c Ncfin B)) |
22 | 18, 19, 20, 21 | syl3anc 1182 |
. 2
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ (A ∪ B) ∈ ( Ncfin A
+c Ncfin B)) |
23 | | nnceleq 4431 |
. 2
⊢ ((( Ncfin (A
∪ B) ∈ Nn ∧ ( Ncfin
A +c Ncfin B)
∈ Nn ) ∧ ((A ∪
B) ∈
Ncfin (A ∪ B) ∧ (A ∪
B) ∈ (
Ncfin A +c Ncfin B))) → Ncfin (A
∪ B) = ( Ncfin A
+c Ncfin B)) |
24 | 8, 16, 17, 22, 23 | syl22anc 1183 |
1
⊢ (((V ∈ Fin ∧ A ∈ V) ∧ B ∈ W ∧ (A ∩
B) = ∅)
→ Ncfin (A ∪ B) = (
Ncfin A +c Ncfin B)) |