New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simp3l | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3l | ⊢ ((φ ∧ ψ ∧ (χ ∧ θ)) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . 2 ⊢ ((χ ∧ θ) → χ) | |
2 | 1 | 3ad2ant3 978 | 1 ⊢ ((φ ∧ ψ ∧ (χ ∧ θ)) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: simpl3l 1010 simpr3l 1016 simp13l 1070 simp23l 1076 simp33l 1082 nnpw1ex 4485 tfinpw1 4495 tfinltfinlem1 4501 nnadjoin 4521 nnpweq 4524 sfin112 4530 sfindbl 4531 sfintfin 4533 sfinltfin 4536 funprgOLD 5151 fvopab4t 5386 |
Copyright terms: Public domain | W3C validator |