New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  snelpw GIF version

Theorem snelpw 4115
 Description: A singleton of a set belongs to a power class of a set containing it. (Contributed by SF, 1-Feb-2015.)
Hypothesis
Ref Expression
snelpw.1 A V
Assertion
Ref Expression
snelpw ({A} BA B)

Proof of Theorem snelpw
StepHypRef Expression
1 snelpw.1 . 2 A V
2 snelpwg 4114 . 2 (A V → ({A} BA B))
31, 2ax-mp 5 1 ({A} BA B)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 176   ∈ wcel 1710  Vcvv 2859  ℘cpw 3722  {csn 3737 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-ss 3259  df-nul 3551  df-pw 3724  df-sn 3741 This theorem is referenced by:  sfinltfin  4535
 Copyright terms: Public domain W3C validator