NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  snelpwg GIF version

Theorem snelpwg 4115
Description: A singleton of a set belongs to a power class of a set containing it. (Contributed by SF, 1-Feb-2015.)
Assertion
Ref Expression
snelpwg (A V → ({A} BA B))

Proof of Theorem snelpwg
StepHypRef Expression
1 snssg 3845 . 2 (A V → (A B ↔ {A} B))
2 snex 4112 . . 3 {A} V
32elpw 3729 . 2 ({A} B ↔ {A} B)
41, 3syl6rbbr 255 1 (A V → ({A} BA B))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wcel 1710   wss 3258  cpw 3723  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742
This theorem is referenced by:  snelpw  4116
  Copyright terms: Public domain W3C validator