New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sneqr | GIF version |
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.) |
Ref | Expression |
---|---|
sneqr.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
sneqr | ⊢ ({A} = {B} → A = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqr.1 | . . . 4 ⊢ A ∈ V | |
2 | 1 | snid 3761 | . . 3 ⊢ A ∈ {A} |
3 | eleq2 2414 | . . 3 ⊢ ({A} = {B} → (A ∈ {A} ↔ A ∈ {B})) | |
4 | 2, 3 | mpbii 202 | . 2 ⊢ ({A} = {B} → A ∈ {B}) |
5 | 1 | elsnc 3757 | . 2 ⊢ (A ∈ {B} ↔ A = B) |
6 | 4, 5 | sylib 188 | 1 ⊢ ({A} = {B} → A = B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 Vcvv 2860 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sn 3742 |
This theorem is referenced by: snsssn 3874 sneqrg 3875 |
Copyright terms: Public domain | W3C validator |