New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > snid | GIF version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
snid.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
snid | ⊢ A ∈ {A} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snid.1 | . 2 ⊢ A ∈ V | |
2 | snidb 3760 | . 2 ⊢ (A ∈ V ↔ A ∈ {A}) | |
3 | 1, 2 | mpbi 199 | 1 ⊢ A ∈ {A} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sn 3742 |
This theorem is referenced by: rabsnt 3798 sneqr 3873 unsneqsn 3888 unipw 4118 eqpw1uni 4331 pw1eqadj 4333 0nelsuc 4401 0cnsuc 4402 nnsucelr 4429 nndisjeq 4430 ssfin 4471 eqtfinrelk 4487 0ceven 4506 vfinspss 4552 proj1op 4601 proj2op 4602 fsn 5433 fsn2 5435 fnressn 5439 fressnfv 5440 fvsn 5446 fvsnun1 5448 dmep 5525 map0 6026 mapsn 6027 xpsnen 6050 enadj 6061 2p1e3c 6157 frecxp 6315 |
Copyright terms: Public domain | W3C validator |