New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > snsspr2 | GIF version |
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
snsspr2 | ⊢ {B} ⊆ {A, B} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3428 | . 2 ⊢ {B} ⊆ ({A} ∪ {B}) | |
2 | df-pr 3743 | . 2 ⊢ {A, B} = ({A} ∪ {B}) | |
3 | 1, 2 | sseqtr4i 3305 | 1 ⊢ {B} ⊆ {A, B} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3208 ⊆ wss 3258 {csn 3738 {cpr 3739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 df-pr 3743 |
This theorem is referenced by: snsstp2 3860 |
Copyright terms: Public domain | W3C validator |