New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssun2 | GIF version |
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
ssun2 | ⊢ A ⊆ (B ∪ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3426 | . 2 ⊢ A ⊆ (A ∪ B) | |
2 | uncom 3408 | . 2 ⊢ (A ∪ B) = (B ∪ A) | |
3 | 1, 2 | sseqtri 3303 | 1 ⊢ A ⊆ (B ∪ A) |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3207 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-ss 3259 |
This theorem is referenced by: ssun4 3429 elun2 3431 nsspssun 3488 unv 3578 un00 3586 snsspr2 3857 snsstp3 3860 unsneqsn 3887 pw1equn 4331 pw1eqadj 4332 nndisjeq 4429 sfinltfin 4535 vfinspss 4551 proj1op 4600 proj2op 4601 enadj 6060 ncdisjun 6136 ce0addcnnul 6179 sbthlem1 6203 |
Copyright terms: Public domain | W3C validator |