New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssun2 | GIF version |
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
ssun2 | ⊢ A ⊆ (B ∪ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3427 | . 2 ⊢ A ⊆ (A ∪ B) | |
2 | uncom 3409 | . 2 ⊢ (A ∪ B) = (B ∪ A) | |
3 | 1, 2 | sseqtri 3304 | 1 ⊢ A ⊆ (B ∪ A) |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3208 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-ss 3260 |
This theorem is referenced by: ssun4 3430 elun2 3432 nsspssun 3489 unv 3579 un00 3587 snsspr2 3858 snsstp3 3861 unsneqsn 3888 pw1equn 4332 pw1eqadj 4333 nndisjeq 4430 sfinltfin 4536 vfinspss 4552 proj1op 4601 proj2op 4602 enadj 6061 ncdisjun 6137 ce0addcnnul 6180 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |