NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  spcgv GIF version

Theorem spcgv 2940
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.)
Hypothesis
Ref Expression
spcgv.1 (x = A → (φψ))
Assertion
Ref Expression
spcgv (A V → (xφψ))
Distinct variable groups:   ψ,x   x,A
Allowed substitution hints:   φ(x)   V(x)

Proof of Theorem spcgv
StepHypRef Expression
1 nfcv 2490 . 2 xA
2 nfv 1619 . 2 xψ
3 spcgv.1 . 2 (x = A → (φψ))
41, 2, 3spcgf 2935 1 (A V → (xφψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540   = wceq 1642   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862
This theorem is referenced by:  spcv  2946  mob2  3017  intss1  3942  dfiin2g  4001  sfintfin  4533  funmo  5126  frd  5923
  Copyright terms: Public domain W3C validator