| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > intss1 | GIF version | ||
| Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) | 
| Ref | Expression | 
|---|---|
| intss1 | ⊢ (A ∈ B → ∩B ⊆ A) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2863 | . . . 4 ⊢ x ∈ V | |
| 2 | 1 | elint 3933 | . . 3 ⊢ (x ∈ ∩B ↔ ∀y(y ∈ B → x ∈ y)) | 
| 3 | eleq1 2413 | . . . . . 6 ⊢ (y = A → (y ∈ B ↔ A ∈ B)) | |
| 4 | eleq2 2414 | . . . . . 6 ⊢ (y = A → (x ∈ y ↔ x ∈ A)) | |
| 5 | 3, 4 | imbi12d 311 | . . . . 5 ⊢ (y = A → ((y ∈ B → x ∈ y) ↔ (A ∈ B → x ∈ A))) | 
| 6 | 5 | spcgv 2940 | . . . 4 ⊢ (A ∈ B → (∀y(y ∈ B → x ∈ y) → (A ∈ B → x ∈ A))) | 
| 7 | 6 | pm2.43a 45 | . . 3 ⊢ (A ∈ B → (∀y(y ∈ B → x ∈ y) → x ∈ A)) | 
| 8 | 2, 7 | syl5bi 208 | . 2 ⊢ (A ∈ B → (x ∈ ∩B → x ∈ A)) | 
| 9 | 8 | ssrdv 3279 | 1 ⊢ (A ∈ B → ∩B ⊆ A) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ⊆ wss 3258 ∩cint 3927 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-int 3928 | 
| This theorem is referenced by: intminss 3953 intmin3 3955 intab 3957 int0el 3958 peano5 4410 spfininduct 4541 clos1induct 5881 | 
| Copyright terms: Public domain | W3C validator |