NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reiotacl GIF version

Theorem reiotacl 4365
Description: Membership law for descriptions. (Contributed by SF, 21-Aug-2011.)
Assertion
Ref Expression
reiotacl (∃!x A φ → (℩x(x A φ)) A)
Distinct variable group:   x,A
Allowed substitution hint:   φ(x)

Proof of Theorem reiotacl
StepHypRef Expression
1 ssrab2 3352 . . 3 {x A φ} A
21a1i 10 . 2 (∃!x A φ → {x A φ} A)
3 reiotacl2 4364 . 2 (∃!x A φ → (℩x(x A φ)) {x A φ})
42, 3sseldd 3275 1 (∃!x A φ → (℩x(x A φ)) A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wcel 1710  ∃!wreu 2617  {crab 2619   wss 3258  cio 4338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-reu 2622  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-ss 3260  df-sn 3742  df-pr 3743  df-uni 3893  df-iota 4340
This theorem is referenced by:  ncfinprop  4475  tfinprop  4490  tccl  6161
  Copyright terms: Public domain W3C validator