Step | Hyp | Ref
| Expression |
1 | | simpl 443 |
. . 3
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
M ∈ NC ) |
2 | | snex 4112 |
. . . . 5
⊢ {M} ∈
V |
3 | | fvex 5340 |
. . . . 5
⊢ ( Spac ‘(2c
↑c M)) ∈ V |
4 | 2, 3 | unex 4107 |
. . . 4
⊢ ({M} ∪ ( Spac ‘(2c
↑c M))) ∈ V |
5 | 4 | a1i 10 |
. . 3
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
({M} ∪ ( Spac ‘(2c
↑c M))) ∈ V) |
6 | | snidg 3759 |
. . . . 5
⊢ (M ∈ NC → M ∈ {M}) |
7 | 6 | adantr 451 |
. . . 4
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
M ∈
{M}) |
8 | | elun1 3431 |
. . . 4
⊢ (M ∈ {M} → M
∈ ({M}
∪ ( Spac
‘(2c ↑c M)))) |
9 | 7, 8 | syl 15 |
. . 3
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
M ∈
({M} ∪ ( Spac ‘(2c
↑c M)))) |
10 | | elun 3221 |
. . . . . . . . . 10
⊢ (x ∈ ({M} ∪ ( Spac ‘(2c
↑c M))) ↔
(x ∈
{M} ∨
x ∈ (
Spac ‘(2c
↑c M)))) |
11 | | elsn 3749 |
. . . . . . . . . . 11
⊢ (x ∈ {M} ↔ x =
M) |
12 | 11 | orbi1i 506 |
. . . . . . . . . 10
⊢ ((x ∈ {M} ∨ x ∈ ( Spac ‘(2c
↑c M))) ↔
(x = M
∨ x ∈ ( Spac
‘(2c ↑c M)))) |
13 | 10, 12 | bitri 240 |
. . . . . . . . 9
⊢ (x ∈ ({M} ∪ ( Spac ‘(2c
↑c M))) ↔
(x = M
∨ x ∈ ( Spac
‘(2c ↑c M)))) |
14 | | spacssnc 6285 |
. . . . . . . . . . . . . . 15
⊢ (M ∈ NC → ( Spac
‘M) ⊆ NC
) |
15 | 14 | adantr 451 |
. . . . . . . . . . . . . 14
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) → (
Spac ‘M) ⊆ NC ) |
16 | | spacid 6286 |
. . . . . . . . . . . . . . . 16
⊢ (M ∈ NC → M ∈ ( Spac
‘M)) |
17 | 16 | adantr 451 |
. . . . . . . . . . . . . . 15
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
M ∈ (
Spac ‘M)) |
18 | | simpr 447 |
. . . . . . . . . . . . . . 15
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
(M ↑c
0c) ∈ NC ) |
19 | | spaccl 6287 |
. . . . . . . . . . . . . . 15
⊢ ((M ∈ NC ∧ M ∈ ( Spac ‘M) ∧ (M ↑c 0c)
∈ NC ) →
(2c ↑c M) ∈ ( Spac ‘M)) |
20 | 1, 17, 18, 19 | syl3anc 1182 |
. . . . . . . . . . . . . 14
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
(2c ↑c M) ∈ ( Spac ‘M)) |
21 | 15, 20 | sseldd 3275 |
. . . . . . . . . . . . 13
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
(2c ↑c M) ∈ NC ) |
22 | | spacid 6286 |
. . . . . . . . . . . . 13
⊢
((2c ↑c M) ∈ NC → (2c
↑c M) ∈ ( Spac
‘(2c ↑c M))) |
23 | 21, 22 | syl 15 |
. . . . . . . . . . . 12
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
(2c ↑c M) ∈ ( Spac ‘(2c
↑c M))) |
24 | | oveq2 5532 |
. . . . . . . . . . . . 13
⊢ (x = M →
(2c ↑c x) = (2c ↑c
M)) |
25 | 24 | eleq1d 2419 |
. . . . . . . . . . . 12
⊢ (x = M →
((2c ↑c x) ∈ ( Spac ‘(2c
↑c M)) ↔
(2c ↑c M) ∈ ( Spac ‘(2c
↑c M)))) |
26 | 23, 25 | syl5ibrcom 213 |
. . . . . . . . . . 11
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
(x = M
→ (2c ↑c x) ∈ ( Spac ‘(2c
↑c M)))) |
27 | 26 | adantr 451 |
. . . . . . . . . 10
⊢ (((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) ∧ (x
↑c 0c) ∈ NC ) →
(x = M
→ (2c ↑c x) ∈ ( Spac ‘(2c
↑c M)))) |
28 | | 2nnc 6168 |
. . . . . . . . . . . . . 14
⊢
2c ∈ Nn |
29 | | ceclnn1 6190 |
. . . . . . . . . . . . . 14
⊢
((2c ∈ Nn ∧ M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
(2c ↑c M) ∈ NC ) |
30 | 28, 29 | mp3an1 1264 |
. . . . . . . . . . . . 13
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
(2c ↑c M) ∈ NC ) |
31 | 30 | adantr 451 |
. . . . . . . . . . . 12
⊢ (((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) ∧ ((x
↑c 0c) ∈ NC ∧ x ∈ ( Spac
‘(2c ↑c M)))) → (2c
↑c M) ∈ NC
) |
32 | | simprr 733 |
. . . . . . . . . . . 12
⊢ (((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) ∧ ((x
↑c 0c) ∈ NC ∧ x ∈ ( Spac
‘(2c ↑c M)))) → x
∈ ( Spac ‘(2c
↑c M))) |
33 | | simprl 732 |
. . . . . . . . . . . 12
⊢ (((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) ∧ ((x
↑c 0c) ∈ NC ∧ x ∈ ( Spac
‘(2c ↑c M)))) → (x
↑c 0c) ∈ NC
) |
34 | | spaccl 6287 |
. . . . . . . . . . . 12
⊢
(((2c ↑c M) ∈ NC ∧ x ∈ ( Spac ‘(2c
↑c M)) ∧ (x
↑c 0c) ∈ NC ) →
(2c ↑c x) ∈ ( Spac ‘(2c
↑c M))) |
35 | 31, 32, 33, 34 | syl3anc 1182 |
. . . . . . . . . . 11
⊢ (((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) ∧ ((x
↑c 0c) ∈ NC ∧ x ∈ ( Spac
‘(2c ↑c M)))) → (2c
↑c x) ∈ ( Spac
‘(2c ↑c M))) |
36 | 35 | expr 598 |
. . . . . . . . . 10
⊢ (((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) ∧ (x
↑c 0c) ∈ NC ) →
(x ∈ (
Spac ‘(2c
↑c M)) →
(2c ↑c x) ∈ ( Spac ‘(2c
↑c M)))) |
37 | 27, 36 | jaod 369 |
. . . . . . . . 9
⊢ (((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) ∧ (x
↑c 0c) ∈ NC ) →
((x = M
∨ x ∈ ( Spac
‘(2c ↑c M))) → (2c
↑c x) ∈ ( Spac
‘(2c ↑c M)))) |
38 | 13, 37 | syl5bi 208 |
. . . . . . . 8
⊢ (((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) ∧ (x
↑c 0c) ∈ NC ) →
(x ∈
({M} ∪ ( Spac ‘(2c
↑c M))) →
(2c ↑c x) ∈ ( Spac ‘(2c
↑c M)))) |
39 | 38 | ex 423 |
. . . . . . 7
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
((x ↑c
0c) ∈ NC → (x ∈ ({M} ∪ (
Spac ‘(2c
↑c M))) →
(2c ↑c x) ∈ ( Spac ‘(2c
↑c M))))) |
40 | 39 | com23 72 |
. . . . . 6
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
(x ∈
({M} ∪ ( Spac ‘(2c
↑c M))) →
((x ↑c
0c) ∈ NC → (2c
↑c x) ∈ ( Spac
‘(2c ↑c M))))) |
41 | 40 | imp3a 420 |
. . . . 5
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
((x ∈
({M} ∪ ( Spac ‘(2c
↑c M))) ∧ (x
↑c 0c) ∈ NC ) →
(2c ↑c x) ∈ ( Spac ‘(2c
↑c M)))) |
42 | | elun2 3432 |
. . . . 5
⊢
((2c ↑c x) ∈ ( Spac ‘(2c
↑c M)) →
(2c ↑c x) ∈ ({M} ∪ ( Spac ‘(2c
↑c M)))) |
43 | 41, 42 | syl6 29 |
. . . 4
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
((x ∈
({M} ∪ ( Spac ‘(2c
↑c M))) ∧ (x
↑c 0c) ∈ NC ) →
(2c ↑c x) ∈ ({M} ∪ ( Spac ‘(2c
↑c M))))) |
44 | 43 | ralrimivw 2699 |
. . 3
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
∀x
∈ ( Spac ‘M)((x ∈ ({M} ∪ (
Spac ‘(2c
↑c M))) ∧ (x
↑c 0c) ∈ NC ) →
(2c ↑c x) ∈ ({M} ∪ ( Spac ‘(2c
↑c M))))) |
45 | | spacind 6288 |
. . 3
⊢ (((M ∈ NC ∧ ({M} ∪ ( Spac ‘(2c
↑c M))) ∈ V) ∧ (M ∈ ({M} ∪ ( Spac ‘(2c
↑c M))) ∧ ∀x ∈ ( Spac ‘M)((x ∈ ({M} ∪ (
Spac ‘(2c
↑c M))) ∧ (x
↑c 0c) ∈ NC ) →
(2c ↑c x) ∈ ({M} ∪ ( Spac ‘(2c
↑c M)))))) → (
Spac ‘M) ⊆ ({M} ∪ ( Spac ‘(2c
↑c M)))) |
46 | 1, 5, 9, 44, 45 | syl22anc 1183 |
. 2
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) → (
Spac ‘M) ⊆ ({M} ∪ ( Spac ‘(2c
↑c M)))) |
47 | 16 | snssd 3854 |
. . . 4
⊢ (M ∈ NC → {M} ⊆ ( Spac
‘M)) |
48 | 47 | adantr 451 |
. . 3
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
{M} ⊆ (
Spac ‘M)) |
49 | | fvex 5340 |
. . . . 5
⊢ ( Spac ‘M) ∈
V |
50 | 49 | a1i 10 |
. . . 4
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) → (
Spac ‘M) ∈
V) |
51 | | spaccl 6287 |
. . . . . . 7
⊢ ((M ∈ NC ∧ x ∈ ( Spac ‘M) ∧ (x ↑c 0c)
∈ NC ) →
(2c ↑c x) ∈ ( Spac ‘M)) |
52 | 51 | 3expib 1154 |
. . . . . 6
⊢ (M ∈ NC → ((x ∈ ( Spac
‘M) ∧ (x
↑c 0c) ∈ NC ) →
(2c ↑c x) ∈ ( Spac ‘M))) |
53 | 52 | adantr 451 |
. . . . 5
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
((x ∈ (
Spac ‘M) ∧ (x ↑c 0c)
∈ NC ) →
(2c ↑c x) ∈ ( Spac ‘M))) |
54 | 53 | ralrimivw 2699 |
. . . 4
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
∀x
∈ ( Spac ‘(2c
↑c M))((x ∈ ( Spac ‘M) ∧ (x ↑c 0c)
∈ NC ) →
(2c ↑c x) ∈ ( Spac ‘M))) |
55 | | spacind 6288 |
. . . 4
⊢
((((2c ↑c M) ∈ NC ∧ ( Spac ‘M) ∈ V) ∧ ((2c ↑c
M) ∈ (
Spac ‘M) ∧ ∀x ∈ ( Spac
‘(2c ↑c M))((x ∈ ( Spac
‘M) ∧ (x
↑c 0c) ∈ NC ) →
(2c ↑c x) ∈ ( Spac ‘M)))) → ( Spac ‘(2c
↑c M)) ⊆ ( Spac
‘M)) |
56 | 21, 50, 20, 54, 55 | syl22anc 1183 |
. . 3
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) → (
Spac ‘(2c
↑c M)) ⊆ ( Spac
‘M)) |
57 | 48, 56 | unssd 3440 |
. 2
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) →
({M} ∪ ( Spac ‘(2c
↑c M))) ⊆ ( Spac
‘M)) |
58 | 46, 57 | eqssd 3290 |
1
⊢ ((M ∈ NC ∧ (M ↑c 0c)
∈ NC ) → (
Spac ‘M) = ({M} ∪
( Spac ‘(2c
↑c M)))) |