NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sseq2i GIF version

Theorem sseq2i 3297
Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
sseq1i.1 A = B
Assertion
Ref Expression
sseq2i (C AC B)

Proof of Theorem sseq2i
StepHypRef Expression
1 sseq1i.1 . 2 A = B
2 sseq2 3294 . 2 (A = B → (C AC B))
31, 2ax-mp 5 1 (C AC B)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by:  sseqtri  3304  syl6sseq  3318  abss  3336  ssrab  3345  ssindif0  3605  difcom  3635  ssunsn2  3866  ssunpr  3869  sspr  3870  sstp  3871  ssintrab  3950  iunpwss  4056  pwadjoin  4120  pw1fnf1o  5856
  Copyright terms: Public domain W3C validator