NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sseq12 GIF version

Theorem sseq12 3295
Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
sseq12 ((A = B C = D) → (A CB D))

Proof of Theorem sseq12
StepHypRef Expression
1 sseq1 3293 . 2 (A = B → (A CB C))
2 sseq2 3294 . 2 (C = D → (B CB D))
31, 2sylan9bb 680 1 ((A = B C = D) → (A CB D))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by:  sseq12i  3298  ssfin  4471  funcnvuni  5162  fun11iun  5306
  Copyright terms: Public domain W3C validator