NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssmin GIF version

Theorem ssmin 3945
Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.)
Assertion
Ref Expression
ssmin A {x (A x φ)}
Distinct variable group:   x,A
Allowed substitution hint:   φ(x)

Proof of Theorem ssmin
StepHypRef Expression
1 ssintab 3943 . 2 (A {x (A x φ)} ↔ x((A x φ) → A x))
2 simpl 443 . 2 ((A x φ) → A x)
31, 2mpgbir 1550 1 A {x (A x φ)}
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  {cab 2339   wss 3257  cint 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ral 2619  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259  df-int 3927
This theorem is referenced by:  clos1base  5878
  Copyright terms: Public domain W3C validator