New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssintab | GIF version |
Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
ssintab | ⊢ (A ⊆ ∩{x ∣ φ} ↔ ∀x(φ → A ⊆ x)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 3943 | . 2 ⊢ (A ⊆ ∩{x ∣ φ} ↔ ∀y ∈ {x ∣ φ}A ⊆ y) | |
2 | sseq2 3294 | . . 3 ⊢ (y = x → (A ⊆ y ↔ A ⊆ x)) | |
3 | 2 | ralab2 3002 | . 2 ⊢ (∀y ∈ {x ∣ φ}A ⊆ y ↔ ∀x(φ → A ⊆ x)) |
4 | 1, 3 | bitri 240 | 1 ⊢ (A ⊆ ∩{x ∣ φ} ↔ ∀x(φ → A ⊆ x)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 {cab 2339 ∀wral 2615 ⊆ wss 3258 ∩cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-int 3928 |
This theorem is referenced by: ssmin 3946 ssintrab 3950 intmin4 3956 |
Copyright terms: Public domain | W3C validator |