![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > clos1base | GIF version |
Description: The initial set of a closure is a subset of the closure. Theorem IX.5.13 of [Rosser] p. 246. (Contributed by SF, 13-Feb-2015.) |
Ref | Expression |
---|---|
clos1base.1 | ⊢ C = Clos1 (S, R) |
Ref | Expression |
---|---|
clos1base | ⊢ S ⊆ C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssmin 3945 | . 2 ⊢ S ⊆ ∩{a ∣ (S ⊆ a ∧ (R “ a) ⊆ a)} | |
2 | clos1base.1 | . . 3 ⊢ C = Clos1 (S, R) | |
3 | df-clos1 5873 | . . 3 ⊢ Clos1 (S, R) = ∩{a ∣ (S ⊆ a ∧ (R “ a) ⊆ a)} | |
4 | 2, 3 | eqtr2i 2374 | . 2 ⊢ ∩{a ∣ (S ⊆ a ∧ (R “ a) ⊆ a)} = C |
5 | 1, 4 | sseqtri 3303 | 1 ⊢ S ⊆ C |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 {cab 2339 ⊆ wss 3257 ∩cint 3926 “ cima 4722 Clos1 cclos1 5872 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 df-int 3927 df-clos1 5873 |
This theorem is referenced by: clos1induct 5880 clos1basesuc 5882 clos1nrel 5886 sbthlem1 6203 spacid 6285 |
Copyright terms: Public domain | W3C validator |