NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  clos1base GIF version

Theorem clos1base 5879
Description: The initial set of a closure is a subset of the closure. Theorem IX.5.13 of [Rosser] p. 246. (Contributed by SF, 13-Feb-2015.)
Hypothesis
Ref Expression
clos1base.1 C = Clos1 (S, R)
Assertion
Ref Expression
clos1base S C

Proof of Theorem clos1base
Dummy variable a is distinct from all other variables.
StepHypRef Expression
1 ssmin 3946 . 2 S {a (S a (Ra) a)}
2 clos1base.1 . . 3 C = Clos1 (S, R)
3 df-clos1 5874 . . 3 Clos1 (S, R) = {a (S a (Ra) a)}
42, 3eqtr2i 2374 . 2 {a (S a (Ra) a)} = C
51, 4sseqtri 3304 1 S C
Colors of variables: wff setvar class
Syntax hints:   wa 358   = wceq 1642  {cab 2339   wss 3258  cint 3927  cima 4723   Clos1 cclos1 5873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-int 3928  df-clos1 5874
This theorem is referenced by:  clos1induct  5881  clos1basesuc  5883  clos1nrel  5887  sbthlem1  6204  spacid  6286
  Copyright terms: Public domain W3C validator