New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqcom | GIF version |
Description: Commutative law for class equality. Theorem 6.5 of [Quine] p. 41. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcom | ⊢ (A = B ↔ B = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 191 | . . 3 ⊢ ((x ∈ A ↔ x ∈ B) ↔ (x ∈ B ↔ x ∈ A)) | |
2 | 1 | albii 1566 | . 2 ⊢ (∀x(x ∈ A ↔ x ∈ B) ↔ ∀x(x ∈ B ↔ x ∈ A)) |
3 | dfcleq 2347 | . 2 ⊢ (A = B ↔ ∀x(x ∈ A ↔ x ∈ B)) | |
4 | dfcleq 2347 | . 2 ⊢ (B = A ↔ ∀x(x ∈ B ↔ x ∈ A)) | |
5 | 2, 3, 4 | 3bitr4i 268 | 1 ⊢ (A = B ↔ B = A) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-cleq 2346 |
This theorem is referenced by: eqcoms 2356 eqcomi 2357 eqcomd 2358 eqeq2 2362 eqtr2 2371 eqtr3 2372 abeq1 2460 pm13.181 2590 necom 2598 gencbvex 2902 reu7 3032 eqsbc2 3104 dfss 3261 sspsstri 3372 dfss5 3462 disj4 3600 ssnelpss 3614 preqr1 4125 snelpw1 4147 0nel1c 4160 eluni1g 4173 opkelopkabg 4246 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 opksnelsik 4266 iota1 4354 sniota 4370 0nelsuc 4401 nndisjeq 4430 preaddccan2lem1 4455 0cnelphi 4598 copsex4g 4611 opeqexb 4621 br1stg 4731 setconslem1 4732 opelxp 4812 elxp3 4832 brswap2 4861 dmopab3 4918 rncoeq 4976 xpcan 5058 xpcan2 5059 dmsnn0 5065 dffn5 5364 fnrnfv 5365 fvelrnb 5366 dfimafn2 5368 funimass4 5369 fnsnfv 5374 dmfco 5382 fnasrn 5418 dffo4 5424 fconstfv 5457 fvclss 5463 funiunfv 5468 dff13 5472 isomin 5497 f1oiso 5500 opbr1st 5502 opbr2nd 5503 oprabid 5551 eloprabga 5579 ovelimab 5611 brsnsi 5774 brsnsi1 5776 brsnsi2 5777 brco1st 5778 brco2nd 5779 txpcofun 5804 otsnelsi3 5806 brcupg 5815 fnsex 5833 qrpprod 5837 dmpprod 5841 fnpprod 5844 brcrossg 5849 pw1fnex 5853 brpw1fn 5855 dfnnc3 5886 antisymex 5913 erth2 5970 qsid 5991 mapexi 6004 xpassenlem 6057 xpassen 6058 enmap2lem1 6064 enmap2lem3 6066 enmap1lem1 6070 nenpw1pwlem1 6085 ncseqnc 6129 leltctr 6213 taddc 6230 letc 6232 ce0lenc1 6240 brtcfn 6247 ncfin 6248 csucex 6260 addccan2nclem1 6264 nncdiv3lem1 6276 nncdiv3lem2 6277 nnc3n3p1 6279 nnc3n3p2 6280 spacvallem1 6282 nchoicelem1 6290 nchoicelem2 6291 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |