New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5ib | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5ib.1 | ⊢ (φ → ψ) |
syl5ib.2 | ⊢ (χ → (ψ ↔ θ)) |
Ref | Expression |
---|---|
syl5ib | ⊢ (χ → (φ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ib.1 | . 2 ⊢ (φ → ψ) | |
2 | syl5ib.2 | . . 3 ⊢ (χ → (ψ ↔ θ)) | |
3 | 2 | biimpd 198 | . 2 ⊢ (χ → (ψ → θ)) |
4 | 1, 3 | syl5 28 | 1 ⊢ (χ → (φ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: syl5ibcom 211 syl5ibr 212 19.23tOLD 1819 nfsb4t 2080 ax11indalem 2197 ax11inda2ALT 2198 gencl 2888 spsbc 3059 eqsbc2 3104 ssnelpss 3614 adj11 3890 uniintsn 3964 phi011lem1 4599 optocl 4839 xpexr 5110 funimass1 5170 fneu 5188 dmfex 5248 fniniseg 5372 eqfnfv 5393 eqfnfv2 5394 elpreima 5408 fnasrn 5418 dffo4 5424 fconst5 5456 funiunfv 5468 dff13 5472 f1ocnvfv 5479 f1ocnvfvb 5480 ce0ncpw1 6186 cecl 6187 dflec3 6222 lenc 6224 |
Copyright terms: Public domain | W3C validator |