NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sstr2 GIF version

Theorem sstr2 3280
Description: Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
sstr2 (A B → (B CA C))

Proof of Theorem sstr2
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 ssel 3268 . . . 4 (A B → (x Ax B))
21imim1d 69 . . 3 (A B → ((x Bx C) → (x Ax C)))
32alimdv 1621 . 2 (A B → (x(x Bx C) → x(x Ax C)))
4 dfss2 3263 . 2 (B Cx(x Bx C))
5 dfss2 3263 . 2 (A Cx(x Ax C))
63, 4, 53imtr4g 261 1 (A B → (B CA C))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540   wcel 1710   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by:  sstr  3281  sstri  3282  sseq1  3293  sseq2  3294  ssun3  3429  ssun4  3430  ssinss1  3484  ssdisj  3601  sspwb  4119  funss  5127  funimass2  5171  fss  5231
  Copyright terms: Public domain W3C validator