| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > syl12anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (φ → ψ) |
| sylXanc.2 | ⊢ (φ → χ) |
| sylXanc.3 | ⊢ (φ → θ) |
| syl12anc.4 | ⊢ ((ψ ∧ (χ ∧ θ)) → τ) |
| Ref | Expression |
|---|---|
| syl12anc | ⊢ (φ → τ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . . 3 ⊢ (φ → ψ) | |
| 2 | sylXanc.2 | . . 3 ⊢ (φ → χ) | |
| 3 | sylXanc.3 | . . 3 ⊢ (φ → θ) | |
| 4 | 1, 2, 3 | jca32 521 | . 2 ⊢ (φ → (ψ ∧ (χ ∧ θ))) |
| 5 | syl12anc.4 | . 2 ⊢ ((ψ ∧ (χ ∧ θ)) → τ) | |
| 6 | 4, 5 | syl 15 | 1 ⊢ (φ → τ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: syl22anc 1183 raaan 3658 raaanv 3659 nndisjeq 4430 prepeano4 4452 ssfin 4471 ncfinraise 4482 ncfinlower 4484 nnpweq 4524 peano4 4558 f1oiso2 5501 frecsuc 6323 |
| Copyright terms: Public domain | W3C validator |