NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  raaanv GIF version

Theorem raaanv 3659
Description: Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.)
Assertion
Ref Expression
raaanv (x A y A (φ ψ) ↔ (x A φ y A ψ))
Distinct variable groups:   φ,y   ψ,x   x,y,A
Allowed substitution hints:   φ(x)   ψ(y)

Proof of Theorem raaanv
StepHypRef Expression
1 rzal 3652 . . 3 (A = x A y A (φ ψ))
2 rzal 3652 . . 3 (A = x A φ)
3 rzal 3652 . . 3 (A = y A ψ)
4 pm5.1 830 . . 3 ((x A y A (φ ψ) (x A φ y A ψ)) → (x A y A (φ ψ) ↔ (x A φ y A ψ)))
51, 2, 3, 4syl12anc 1180 . 2 (A = → (x A y A (φ ψ) ↔ (x A φ y A ψ)))
6 r19.28zv 3646 . . . 4 (A → (y A (φ ψ) ↔ (φ y A ψ)))
76ralbidv 2635 . . 3 (A → (x A y A (φ ψ) ↔ x A (φ y A ψ)))
8 r19.27zv 3650 . . 3 (A → (x A (φ y A ψ) ↔ (x A φ y A ψ)))
97, 8bitrd 244 . 2 (A → (x A y A (φ ψ) ↔ (x A φ y A ψ)))
105, 9pm2.61ine 2593 1 (x A y A (φ ψ) ↔ (x A φ y A ψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   = wceq 1642  wne 2517  wral 2615  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator