New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > raaanv | GIF version |
Description: Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.) |
Ref | Expression |
---|---|
raaanv | ⊢ (∀x ∈ A ∀y ∈ A (φ ∧ ψ) ↔ (∀x ∈ A φ ∧ ∀y ∈ A ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rzal 3652 | . . 3 ⊢ (A = ∅ → ∀x ∈ A ∀y ∈ A (φ ∧ ψ)) | |
2 | rzal 3652 | . . 3 ⊢ (A = ∅ → ∀x ∈ A φ) | |
3 | rzal 3652 | . . 3 ⊢ (A = ∅ → ∀y ∈ A ψ) | |
4 | pm5.1 830 | . . 3 ⊢ ((∀x ∈ A ∀y ∈ A (φ ∧ ψ) ∧ (∀x ∈ A φ ∧ ∀y ∈ A ψ)) → (∀x ∈ A ∀y ∈ A (φ ∧ ψ) ↔ (∀x ∈ A φ ∧ ∀y ∈ A ψ))) | |
5 | 1, 2, 3, 4 | syl12anc 1180 | . 2 ⊢ (A = ∅ → (∀x ∈ A ∀y ∈ A (φ ∧ ψ) ↔ (∀x ∈ A φ ∧ ∀y ∈ A ψ))) |
6 | r19.28zv 3646 | . . . 4 ⊢ (A ≠ ∅ → (∀y ∈ A (φ ∧ ψ) ↔ (φ ∧ ∀y ∈ A ψ))) | |
7 | 6 | ralbidv 2635 | . . 3 ⊢ (A ≠ ∅ → (∀x ∈ A ∀y ∈ A (φ ∧ ψ) ↔ ∀x ∈ A (φ ∧ ∀y ∈ A ψ))) |
8 | r19.27zv 3650 | . . 3 ⊢ (A ≠ ∅ → (∀x ∈ A (φ ∧ ∀y ∈ A ψ) ↔ (∀x ∈ A φ ∧ ∀y ∈ A ψ))) | |
9 | 7, 8 | bitrd 244 | . 2 ⊢ (A ≠ ∅ → (∀x ∈ A ∀y ∈ A (φ ∧ ψ) ↔ (∀x ∈ A φ ∧ ∀y ∈ A ψ))) |
10 | 5, 9 | pm2.61ine 2593 | 1 ⊢ (∀x ∈ A ∀y ∈ A (φ ∧ ψ) ↔ (∀x ∈ A φ ∧ ∀y ∈ A ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ≠ wne 2517 ∀wral 2615 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |