Step | Hyp | Ref
| Expression |
1 | | brlecg 6113 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c N ↔ ∃a ∈ M ∃b ∈ N a ⊆ b)) |
2 | | ncseqnc 6129 |
. . . . . . 7
⊢ (M ∈ NC → (M = Nc a ↔ a ∈ M)) |
3 | | ncseqnc 6129 |
. . . . . . 7
⊢ (N ∈ NC → (N = Nc b ↔ b ∈ N)) |
4 | 2, 3 | bi2anan9 843 |
. . . . . 6
⊢ ((M ∈ NC ∧ N ∈ NC ) → ((M =
Nc a ∧ N = Nc b) ↔
(a ∈
M ∧
b ∈
N))) |
5 | 4 | biimpar 471 |
. . . . 5
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ (a ∈ M ∧ b ∈ N)) → (M =
Nc a ∧ N = Nc b)) |
6 | | vex 2863 |
. . . . . . . . 9
⊢ b ∈
V |
7 | | vex 2863 |
. . . . . . . . 9
⊢ a ∈
V |
8 | 6, 7 | difex 4108 |
. . . . . . . 8
⊢ (b ∖ a) ∈
V |
9 | 8 | ncelncsi 6122 |
. . . . . . 7
⊢ Nc (b ∖ a) ∈ NC |
10 | | disjdif 3623 |
. . . . . . . . 9
⊢ (a ∩ (b ∖ a)) = ∅ |
11 | 7, 8 | ncdisjun 6137 |
. . . . . . . . 9
⊢ ((a ∩ (b ∖ a)) = ∅ → Nc (a ∪ (b ∖ a)) = (
Nc a
+c Nc (b ∖ a))) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . 8
⊢ Nc (a ∪
(b ∖
a)) = ( Nc
a +c Nc (b ∖ a)) |
13 | | undif2 3627 |
. . . . . . . . . 10
⊢ (a ∪ (b ∖ a)) =
(a ∪ b) |
14 | | ssequn1 3434 |
. . . . . . . . . . 11
⊢ (a ⊆ b ↔ (a
∪ b) = b) |
15 | 14 | biimpi 186 |
. . . . . . . . . 10
⊢ (a ⊆ b → (a
∪ b) = b) |
16 | 13, 15 | syl5eq 2397 |
. . . . . . . . 9
⊢ (a ⊆ b → (a
∪ (b ∖ a)) =
b) |
17 | 16 | nceqd 6111 |
. . . . . . . 8
⊢ (a ⊆ b → Nc (a ∪ (b ∖ a)) = Nc b) |
18 | 12, 17 | syl5reqr 2400 |
. . . . . . 7
⊢ (a ⊆ b → Nc b = ( Nc a +c Nc (b ∖ a))) |
19 | | addceq2 4385 |
. . . . . . . . 9
⊢ (p = Nc (b ∖ a) → ( Nc a +c p) = ( Nc a +c Nc (b ∖ a))) |
20 | 19 | eqeq2d 2364 |
. . . . . . . 8
⊢ (p = Nc (b ∖ a) → ( Nc b = ( Nc a +c p) ↔ Nc b = ( Nc a +c Nc (b ∖ a)))) |
21 | 20 | rspcev 2956 |
. . . . . . 7
⊢ (( Nc (b ∖ a) ∈ NC ∧ Nc b = ( Nc a +c Nc (b ∖ a))) →
∃p ∈ NC Nc b = ( Nc a
+c p)) |
22 | 9, 18, 21 | sylancr 644 |
. . . . . 6
⊢ (a ⊆ b → ∃p ∈ NC Nc b = ( Nc a
+c p)) |
23 | | id 19 |
. . . . . . . . 9
⊢ (N = Nc b → N =
Nc b) |
24 | | addceq1 4384 |
. . . . . . . . 9
⊢ (M = Nc a → (M
+c p) = ( Nc a
+c p)) |
25 | 23, 24 | eqeqan12d 2368 |
. . . . . . . 8
⊢ ((N = Nc b ∧ M = Nc a) → (N =
(M +c p) ↔ Nc b = ( Nc a +c p))) |
26 | 25 | rexbidv 2636 |
. . . . . . 7
⊢ ((N = Nc b ∧ M = Nc a) → (∃p ∈ NC N = (M
+c p) ↔ ∃p ∈ NC Nc b = ( Nc a
+c p))) |
27 | 26 | ancoms 439 |
. . . . . 6
⊢ ((M = Nc a ∧ N = Nc b) → (∃p ∈ NC N = (M
+c p) ↔ ∃p ∈ NC Nc b = ( Nc a
+c p))) |
28 | 22, 27 | syl5ibr 212 |
. . . . 5
⊢ ((M = Nc a ∧ N = Nc b) → (a
⊆ b
→ ∃p ∈ NC N = (M +c p))) |
29 | 5, 28 | syl 15 |
. . . 4
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ (a ∈ M ∧ b ∈ N)) → (a
⊆ b
→ ∃p ∈ NC N = (M +c p))) |
30 | 29 | rexlimdvva 2746 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → (∃a ∈ M ∃b ∈ N a ⊆ b → ∃p ∈ NC N = (M
+c p))) |
31 | 1, 30 | sylbid 206 |
. 2
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c N → ∃p ∈ NC N = (M
+c p))) |
32 | | addlecncs 6210 |
. . . . 5
⊢ ((M ∈ NC ∧ p ∈ NC ) → M
≤c (M +c
p)) |
33 | | breq2 4644 |
. . . . 5
⊢ (N = (M
+c p) → (M ≤c N ↔ M
≤c (M +c
p))) |
34 | 32, 33 | syl5ibrcom 213 |
. . . 4
⊢ ((M ∈ NC ∧ p ∈ NC ) → (N =
(M +c p) → M
≤c N)) |
35 | 34 | adantlr 695 |
. . 3
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ p ∈ NC ) → (N =
(M +c p) → M
≤c N)) |
36 | 35 | rexlimdva 2739 |
. 2
⊢ ((M ∈ NC ∧ N ∈ NC ) → (∃p ∈ NC N = (M
+c p) → M ≤c N)) |
37 | 31, 36 | impbid 183 |
1
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c N ↔ ∃p ∈ NC N = (M
+c p))) |