| Step | Hyp | Ref
 | Expression | 
| 1 |   | brlecg 6113 | 
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c N ↔ ∃a ∈ M ∃b ∈ N a ⊆ b)) | 
| 2 |   | ncseqnc 6129 | 
. . . . . . 7
⊢ (M ∈ NC → (M = Nc a ↔ a ∈ M)) | 
| 3 |   | ncseqnc 6129 | 
. . . . . . 7
⊢ (N ∈ NC → (N = Nc b ↔ b ∈ N)) | 
| 4 | 2, 3 | bi2anan9 843 | 
. . . . . 6
⊢ ((M ∈ NC ∧ N ∈ NC ) → ((M =
Nc a ∧ N = Nc b) ↔
(a ∈
M ∧
b ∈
N))) | 
| 5 | 4 | biimpar 471 | 
. . . . 5
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ (a ∈ M ∧ b ∈ N)) → (M =
Nc a ∧ N = Nc b)) | 
| 6 |   | vex 2863 | 
. . . . . . . . 9
⊢ b ∈
V | 
| 7 |   | vex 2863 | 
. . . . . . . . 9
⊢ a ∈
V | 
| 8 | 6, 7 | difex 4108 | 
. . . . . . . 8
⊢ (b ∖ a) ∈
V | 
| 9 | 8 | ncelncsi 6122 | 
. . . . . . 7
⊢  Nc (b ∖ a) ∈ NC | 
| 10 |   | disjdif 3623 | 
. . . . . . . . 9
⊢ (a ∩ (b ∖ a)) = ∅ | 
| 11 | 7, 8 | ncdisjun 6137 | 
. . . . . . . . 9
⊢ ((a ∩ (b ∖ a)) = ∅ → Nc (a ∪ (b ∖ a)) = (
Nc a
+c Nc (b ∖ a))) | 
| 12 | 10, 11 | ax-mp 5 | 
. . . . . . . 8
⊢  Nc (a ∪
(b ∖
a)) = ( Nc
a +c Nc (b ∖ a)) | 
| 13 |   | undif2 3627 | 
. . . . . . . . . 10
⊢ (a ∪ (b ∖ a)) =
(a ∪ b) | 
| 14 |   | ssequn1 3434 | 
. . . . . . . . . . 11
⊢ (a ⊆ b ↔ (a
∪ b) = b) | 
| 15 | 14 | biimpi 186 | 
. . . . . . . . . 10
⊢ (a ⊆ b → (a
∪ b) = b) | 
| 16 | 13, 15 | syl5eq 2397 | 
. . . . . . . . 9
⊢ (a ⊆ b → (a
∪ (b ∖ a)) =
b) | 
| 17 | 16 | nceqd 6111 | 
. . . . . . . 8
⊢ (a ⊆ b → Nc (a ∪ (b ∖ a)) = Nc b) | 
| 18 | 12, 17 | syl5reqr 2400 | 
. . . . . . 7
⊢ (a ⊆ b → Nc b = ( Nc a +c Nc (b ∖ a))) | 
| 19 |   | addceq2 4385 | 
. . . . . . . . 9
⊢ (p = Nc (b ∖ a) → ( Nc a +c p) = ( Nc a +c Nc (b ∖ a))) | 
| 20 | 19 | eqeq2d 2364 | 
. . . . . . . 8
⊢ (p = Nc (b ∖ a) → ( Nc b = ( Nc a +c p) ↔ Nc b = ( Nc a +c Nc (b ∖ a)))) | 
| 21 | 20 | rspcev 2956 | 
. . . . . . 7
⊢ (( Nc (b ∖ a) ∈ NC ∧ Nc b = ( Nc a +c Nc (b ∖ a))) →
∃p ∈ NC Nc b = ( Nc a
+c p)) | 
| 22 | 9, 18, 21 | sylancr 644 | 
. . . . . 6
⊢ (a ⊆ b → ∃p ∈ NC Nc b = ( Nc a
+c p)) | 
| 23 |   | id 19 | 
. . . . . . . . 9
⊢ (N = Nc b → N =
Nc b) | 
| 24 |   | addceq1 4384 | 
. . . . . . . . 9
⊢ (M = Nc a → (M
+c p) = ( Nc a
+c p)) | 
| 25 | 23, 24 | eqeqan12d 2368 | 
. . . . . . . 8
⊢ ((N = Nc b ∧ M = Nc a) → (N =
(M +c p) ↔ Nc b = ( Nc a +c p))) | 
| 26 | 25 | rexbidv 2636 | 
. . . . . . 7
⊢ ((N = Nc b ∧ M = Nc a) → (∃p ∈ NC N = (M
+c p) ↔ ∃p ∈ NC Nc b = ( Nc a
+c p))) | 
| 27 | 26 | ancoms 439 | 
. . . . . 6
⊢ ((M = Nc a ∧ N = Nc b) → (∃p ∈ NC N = (M
+c p) ↔ ∃p ∈ NC Nc b = ( Nc a
+c p))) | 
| 28 | 22, 27 | syl5ibr 212 | 
. . . . 5
⊢ ((M = Nc a ∧ N = Nc b) → (a
⊆ b
→ ∃p ∈ NC N = (M +c p))) | 
| 29 | 5, 28 | syl 15 | 
. . . 4
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ (a ∈ M ∧ b ∈ N)) → (a
⊆ b
→ ∃p ∈ NC N = (M +c p))) | 
| 30 | 29 | rexlimdvva 2746 | 
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → (∃a ∈ M ∃b ∈ N a ⊆ b → ∃p ∈ NC N = (M
+c p))) | 
| 31 | 1, 30 | sylbid 206 | 
. 2
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c N → ∃p ∈ NC N = (M
+c p))) | 
| 32 |   | addlecncs 6210 | 
. . . . 5
⊢ ((M ∈ NC ∧ p ∈ NC ) → M
≤c (M +c
p)) | 
| 33 |   | breq2 4644 | 
. . . . 5
⊢ (N = (M
+c p) → (M ≤c N ↔ M
≤c (M +c
p))) | 
| 34 | 32, 33 | syl5ibrcom 213 | 
. . . 4
⊢ ((M ∈ NC ∧ p ∈ NC ) → (N =
(M +c p) → M
≤c N)) | 
| 35 | 34 | adantlr 695 | 
. . 3
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ p ∈ NC ) → (N =
(M +c p) → M
≤c N)) | 
| 36 | 35 | rexlimdva 2739 | 
. 2
⊢ ((M ∈ NC ∧ N ∈ NC ) → (∃p ∈ NC N = (M
+c p) → M ≤c N)) | 
| 37 | 31, 36 | impbid 183 | 
1
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c N ↔ ∃p ∈ NC N = (M
+c p))) |