NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dflec2 GIF version

Theorem dflec2 6211
Description: Cardinal less than or equal in terms of cardinal addition. Theorem XI.2.22 of [Rosser] p. 377. (Contributed by SF, 11-Mar-2015.)
Assertion
Ref Expression
dflec2 ((M NC N NC ) → (Mc Np NC N = (M +c p)))
Distinct variable groups:   M,p   N,p

Proof of Theorem dflec2
Dummy variables a b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brlecg 6113 . . 3 ((M NC N NC ) → (Mc Na M b N a b))
2 ncseqnc 6129 . . . . . . 7 (M NC → (M = Nc aa M))
3 ncseqnc 6129 . . . . . . 7 (N NC → (N = Nc bb N))
42, 3bi2anan9 843 . . . . . 6 ((M NC N NC ) → ((M = Nc a N = Nc b) ↔ (a M b N)))
54biimpar 471 . . . . 5 (((M NC N NC ) (a M b N)) → (M = Nc a N = Nc b))
6 vex 2863 . . . . . . . . 9 b V
7 vex 2863 . . . . . . . . 9 a V
86, 7difex 4108 . . . . . . . 8 (b a) V
98ncelncsi 6122 . . . . . . 7 Nc (b a) NC
10 disjdif 3623 . . . . . . . . 9 (a ∩ (b a)) =
117, 8ncdisjun 6137 . . . . . . . . 9 ((a ∩ (b a)) = Nc (a ∪ (b a)) = ( Nc a +c Nc (b a)))
1210, 11ax-mp 5 . . . . . . . 8 Nc (a ∪ (b a)) = ( Nc a +c Nc (b a))
13 undif2 3627 . . . . . . . . . 10 (a ∪ (b a)) = (ab)
14 ssequn1 3434 . . . . . . . . . . 11 (a b ↔ (ab) = b)
1514biimpi 186 . . . . . . . . . 10 (a b → (ab) = b)
1613, 15syl5eq 2397 . . . . . . . . 9 (a b → (a ∪ (b a)) = b)
1716nceqd 6111 . . . . . . . 8 (a bNc (a ∪ (b a)) = Nc b)
1812, 17syl5reqr 2400 . . . . . . 7 (a bNc b = ( Nc a +c Nc (b a)))
19 addceq2 4385 . . . . . . . . 9 (p = Nc (b a) → ( Nc a +c p) = ( Nc a +c Nc (b a)))
2019eqeq2d 2364 . . . . . . . 8 (p = Nc (b a) → ( Nc b = ( Nc a +c p) ↔ Nc b = ( Nc a +c Nc (b a))))
2120rspcev 2956 . . . . . . 7 (( Nc (b a) NC Nc b = ( Nc a +c Nc (b a))) → p NC Nc b = ( Nc a +c p))
229, 18, 21sylancr 644 . . . . . 6 (a bp NC Nc b = ( Nc a +c p))
23 id 19 . . . . . . . . 9 (N = Nc bN = Nc b)
24 addceq1 4384 . . . . . . . . 9 (M = Nc a → (M +c p) = ( Nc a +c p))
2523, 24eqeqan12d 2368 . . . . . . . 8 ((N = Nc b M = Nc a) → (N = (M +c p) ↔ Nc b = ( Nc a +c p)))
2625rexbidv 2636 . . . . . . 7 ((N = Nc b M = Nc a) → (p NC N = (M +c p) ↔ p NC Nc b = ( Nc a +c p)))
2726ancoms 439 . . . . . 6 ((M = Nc a N = Nc b) → (p NC N = (M +c p) ↔ p NC Nc b = ( Nc a +c p)))
2822, 27syl5ibr 212 . . . . 5 ((M = Nc a N = Nc b) → (a bp NC N = (M +c p)))
295, 28syl 15 . . . 4 (((M NC N NC ) (a M b N)) → (a bp NC N = (M +c p)))
3029rexlimdvva 2746 . . 3 ((M NC N NC ) → (a M b N a bp NC N = (M +c p)))
311, 30sylbid 206 . 2 ((M NC N NC ) → (Mc Np NC N = (M +c p)))
32 addlecncs 6210 . . . . 5 ((M NC p NC ) → Mc (M +c p))
33 breq2 4644 . . . . 5 (N = (M +c p) → (Mc NMc (M +c p)))
3432, 33syl5ibrcom 213 . . . 4 ((M NC p NC ) → (N = (M +c p) → Mc N))
3534adantlr 695 . . 3 (((M NC N NC ) p NC ) → (N = (M +c p) → Mc N))
3635rexlimdva 2739 . 2 ((M NC N NC ) → (p NC N = (M +c p) → Mc N))
3731, 36impbid 183 1 ((M NC N NC ) → (Mc Np NC N = (M +c p)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  wrex 2616   cdif 3207  cun 3208  cin 3209   wss 3258  c0 3551   +c cplc 4376   class class class wbr 4640   NC cncs 6089  c clec 6090   Nc cnc 6092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-lec 6100  df-nc 6102
This theorem is referenced by:  lectr  6212  leaddc1  6215  nc0suc  6218  leconnnc  6219  tlecg  6231  letc  6232  nclenn  6250  lemuc1  6254  lecadd2  6267  ncslesuc  6268  nchoicelem14  6303  nchoicelem17  6306
  Copyright terms: Public domain W3C validator