New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > enmap1lem3 | GIF version |
Description: Lemma for enmap2 6069. Binary relationship condition over W. (Contributed by SF, 3-Mar-2015.) |
Ref | Expression |
---|---|
enmap1lem3.1 | ⊢ W = (s ∈ (A ↑m G) ↦ (r ∘ s)) |
Ref | Expression |
---|---|
enmap1lem3 | ⊢ (r:A–1-1-onto→B → (SWT → S = (◡r ∘ T))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breldm 4912 | . . . 4 ⊢ (SWT → S ∈ dom W) | |
2 | enmap1lem3.1 | . . . . . 6 ⊢ W = (s ∈ (A ↑m G) ↦ (r ∘ s)) | |
3 | 2 | enmap1lem2 6071 | . . . . 5 ⊢ W Fn (A ↑m G) |
4 | fndm 5183 | . . . . 5 ⊢ (W Fn (A ↑m G) → dom W = (A ↑m G)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ dom W = (A ↑m G) |
6 | 1, 5 | syl6eleq 2443 | . . 3 ⊢ (SWT → S ∈ (A ↑m G)) |
7 | fnbrfvb 5359 | . . . . . . 7 ⊢ ((W Fn (A ↑m G) ∧ S ∈ (A ↑m G)) → ((W ‘S) = T ↔ SWT)) | |
8 | 3, 7 | mpan 651 | . . . . . 6 ⊢ (S ∈ (A ↑m G) → ((W ‘S) = T ↔ SWT)) |
9 | vex 2863 | . . . . . . . . 9 ⊢ r ∈ V | |
10 | coexg 4750 | . . . . . . . . 9 ⊢ ((r ∈ V ∧ S ∈ (A ↑m G)) → (r ∘ S) ∈ V) | |
11 | 9, 10 | mpan 651 | . . . . . . . 8 ⊢ (S ∈ (A ↑m G) → (r ∘ S) ∈ V) |
12 | coeq2 4876 | . . . . . . . . 9 ⊢ (s = S → (r ∘ s) = (r ∘ S)) | |
13 | 12, 2 | fvmptg 5699 | . . . . . . . 8 ⊢ ((S ∈ (A ↑m G) ∧ (r ∘ S) ∈ V) → (W ‘S) = (r ∘ S)) |
14 | 11, 13 | mpdan 649 | . . . . . . 7 ⊢ (S ∈ (A ↑m G) → (W ‘S) = (r ∘ S)) |
15 | 14 | eqeq1d 2361 | . . . . . 6 ⊢ (S ∈ (A ↑m G) → ((W ‘S) = T ↔ (r ∘ S) = T)) |
16 | 8, 15 | bitr3d 246 | . . . . 5 ⊢ (S ∈ (A ↑m G) → (SWT ↔ (r ∘ S) = T)) |
17 | 16 | biimpd 198 | . . . 4 ⊢ (S ∈ (A ↑m G) → (SWT → (r ∘ S) = T)) |
18 | 6, 17 | mpcom 32 | . . 3 ⊢ (SWT → (r ∘ S) = T) |
19 | 6, 18 | jca 518 | . 2 ⊢ (SWT → (S ∈ (A ↑m G) ∧ (r ∘ S) = T)) |
20 | coass 5098 | . . . . 5 ⊢ ((◡r ∘ r) ∘ S) = (◡r ∘ (r ∘ S)) | |
21 | f1ococnv1 5311 | . . . . . . 7 ⊢ (r:A–1-1-onto→B → (◡r ∘ r) = ( I ↾ A)) | |
22 | 21 | coeq1d 4879 | . . . . . 6 ⊢ (r:A–1-1-onto→B → ((◡r ∘ r) ∘ S) = (( I ↾ A) ∘ S)) |
23 | elmapi 6017 | . . . . . . 7 ⊢ (S ∈ (A ↑m G) → S:G–→A) | |
24 | fcoi2 5242 | . . . . . . 7 ⊢ (S:G–→A → (( I ↾ A) ∘ S) = S) | |
25 | 23, 24 | syl 15 | . . . . . 6 ⊢ (S ∈ (A ↑m G) → (( I ↾ A) ∘ S) = S) |
26 | 22, 25 | sylan9eq 2405 | . . . . 5 ⊢ ((r:A–1-1-onto→B ∧ S ∈ (A ↑m G)) → ((◡r ∘ r) ∘ S) = S) |
27 | 20, 26 | syl5reqr 2400 | . . . 4 ⊢ ((r:A–1-1-onto→B ∧ S ∈ (A ↑m G)) → S = (◡r ∘ (r ∘ S))) |
28 | coeq2 4876 | . . . . 5 ⊢ ((r ∘ S) = T → (◡r ∘ (r ∘ S)) = (◡r ∘ T)) | |
29 | 28 | eqeq2d 2364 | . . . 4 ⊢ ((r ∘ S) = T → (S = (◡r ∘ (r ∘ S)) ↔ S = (◡r ∘ T))) |
30 | 27, 29 | syl5ibcom 211 | . . 3 ⊢ ((r:A–1-1-onto→B ∧ S ∈ (A ↑m G)) → ((r ∘ S) = T → S = (◡r ∘ T))) |
31 | 30 | expimpd 586 | . 2 ⊢ (r:A–1-1-onto→B → ((S ∈ (A ↑m G) ∧ (r ∘ S) = T) → S = (◡r ∘ T))) |
32 | 19, 31 | syl5 28 | 1 ⊢ (r:A–1-1-onto→B → (SWT → S = (◡r ∘ T))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 class class class wbr 4640 ∘ ccom 4722 I cid 4764 ◡ccnv 4772 dom cdm 4773 ↾ cres 4775 Fn wfn 4777 –→wf 4778 –1-1-onto→wf1o 4781 ‘cfv 4782 (class class class)co 5526 ↦ cmpt 5652 ↑m cmap 6000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-map 6002 |
This theorem is referenced by: enmap1lem4 6073 |
Copyright terms: Public domain | W3C validator |