New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > enmap1lem3 | GIF version |
Description: Lemma for enmap2 6068. Binary relationship condition over W. (Contributed by SF, 3-Mar-2015.) |
Ref | Expression |
---|---|
enmap1lem3.1 | ⊢ W = (s ∈ (A ↑m G) ↦ (r ∘ s)) |
Ref | Expression |
---|---|
enmap1lem3 | ⊢ (r:A–1-1-onto→B → (SWT → S = (◡r ∘ T))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breldm 4911 | . . . 4 ⊢ (SWT → S ∈ dom W) | |
2 | enmap1lem3.1 | . . . . . 6 ⊢ W = (s ∈ (A ↑m G) ↦ (r ∘ s)) | |
3 | 2 | enmap1lem2 6070 | . . . . 5 ⊢ W Fn (A ↑m G) |
4 | fndm 5182 | . . . . 5 ⊢ (W Fn (A ↑m G) → dom W = (A ↑m G)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ dom W = (A ↑m G) |
6 | 1, 5 | syl6eleq 2443 | . . 3 ⊢ (SWT → S ∈ (A ↑m G)) |
7 | fnbrfvb 5358 | . . . . . . 7 ⊢ ((W Fn (A ↑m G) ∧ S ∈ (A ↑m G)) → ((W ‘S) = T ↔ SWT)) | |
8 | 3, 7 | mpan 651 | . . . . . 6 ⊢ (S ∈ (A ↑m G) → ((W ‘S) = T ↔ SWT)) |
9 | vex 2862 | . . . . . . . . 9 ⊢ r ∈ V | |
10 | coexg 4749 | . . . . . . . . 9 ⊢ ((r ∈ V ∧ S ∈ (A ↑m G)) → (r ∘ S) ∈ V) | |
11 | 9, 10 | mpan 651 | . . . . . . . 8 ⊢ (S ∈ (A ↑m G) → (r ∘ S) ∈ V) |
12 | coeq2 4875 | . . . . . . . . 9 ⊢ (s = S → (r ∘ s) = (r ∘ S)) | |
13 | 12, 2 | fvmptg 5698 | . . . . . . . 8 ⊢ ((S ∈ (A ↑m G) ∧ (r ∘ S) ∈ V) → (W ‘S) = (r ∘ S)) |
14 | 11, 13 | mpdan 649 | . . . . . . 7 ⊢ (S ∈ (A ↑m G) → (W ‘S) = (r ∘ S)) |
15 | 14 | eqeq1d 2361 | . . . . . 6 ⊢ (S ∈ (A ↑m G) → ((W ‘S) = T ↔ (r ∘ S) = T)) |
16 | 8, 15 | bitr3d 246 | . . . . 5 ⊢ (S ∈ (A ↑m G) → (SWT ↔ (r ∘ S) = T)) |
17 | 16 | biimpd 198 | . . . 4 ⊢ (S ∈ (A ↑m G) → (SWT → (r ∘ S) = T)) |
18 | 6, 17 | mpcom 32 | . . 3 ⊢ (SWT → (r ∘ S) = T) |
19 | 6, 18 | jca 518 | . 2 ⊢ (SWT → (S ∈ (A ↑m G) ∧ (r ∘ S) = T)) |
20 | coass 5097 | . . . . 5 ⊢ ((◡r ∘ r) ∘ S) = (◡r ∘ (r ∘ S)) | |
21 | f1ococnv1 5310 | . . . . . . 7 ⊢ (r:A–1-1-onto→B → (◡r ∘ r) = ( I ↾ A)) | |
22 | 21 | coeq1d 4878 | . . . . . 6 ⊢ (r:A–1-1-onto→B → ((◡r ∘ r) ∘ S) = (( I ↾ A) ∘ S)) |
23 | elmapi 6016 | . . . . . . 7 ⊢ (S ∈ (A ↑m G) → S:G–→A) | |
24 | fcoi2 5241 | . . . . . . 7 ⊢ (S:G–→A → (( I ↾ A) ∘ S) = S) | |
25 | 23, 24 | syl 15 | . . . . . 6 ⊢ (S ∈ (A ↑m G) → (( I ↾ A) ∘ S) = S) |
26 | 22, 25 | sylan9eq 2405 | . . . . 5 ⊢ ((r:A–1-1-onto→B ∧ S ∈ (A ↑m G)) → ((◡r ∘ r) ∘ S) = S) |
27 | 20, 26 | syl5reqr 2400 | . . . 4 ⊢ ((r:A–1-1-onto→B ∧ S ∈ (A ↑m G)) → S = (◡r ∘ (r ∘ S))) |
28 | coeq2 4875 | . . . . 5 ⊢ ((r ∘ S) = T → (◡r ∘ (r ∘ S)) = (◡r ∘ T)) | |
29 | 28 | eqeq2d 2364 | . . . 4 ⊢ ((r ∘ S) = T → (S = (◡r ∘ (r ∘ S)) ↔ S = (◡r ∘ T))) |
30 | 27, 29 | syl5ibcom 211 | . . 3 ⊢ ((r:A–1-1-onto→B ∧ S ∈ (A ↑m G)) → ((r ∘ S) = T → S = (◡r ∘ T))) |
31 | 30 | expimpd 586 | . 2 ⊢ (r:A–1-1-onto→B → ((S ∈ (A ↑m G) ∧ (r ∘ S) = T) → S = (◡r ∘ T))) |
32 | 19, 31 | syl5 28 | 1 ⊢ (r:A–1-1-onto→B → (SWT → S = (◡r ∘ T))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2859 class class class wbr 4639 ∘ ccom 4721 I cid 4763 ◡ccnv 4771 dom cdm 4772 ↾ cres 4774 Fn wfn 4776 –→wf 4777 –1-1-onto→wf1o 4780 ‘cfv 4781 (class class class)co 5525 ↦ cmpt 5651 ↑m cmap 5999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-fv 4795 df-2nd 4797 df-ov 5526 df-oprab 5528 df-mpt 5652 df-mpt2 5654 df-txp 5736 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-map 6001 |
This theorem is referenced by: enmap1lem4 6072 |
Copyright terms: Public domain | W3C validator |