NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  enmap1lem3 GIF version

Theorem enmap1lem3 6072
Description: Lemma for enmap2 6069. Binary relationship condition over W. (Contributed by SF, 3-Mar-2015.)
Hypothesis
Ref Expression
enmap1lem3.1 W = (s (Am G) (r s))
Assertion
Ref Expression
enmap1lem3 (r:A1-1-ontoB → (SWTS = (r T)))
Distinct variable groups:   G,s   s,r   S,s   A,s
Allowed substitution hints:   A(r)   B(s,r)   S(r)   T(s,r)   G(r)   W(s,r)

Proof of Theorem enmap1lem3
StepHypRef Expression
1 breldm 4912 . . . 4 (SWTS dom W)
2 enmap1lem3.1 . . . . . 6 W = (s (Am G) (r s))
32enmap1lem2 6071 . . . . 5 W Fn (Am G)
4 fndm 5183 . . . . 5 (W Fn (Am G) → dom W = (Am G))
53, 4ax-mp 5 . . . 4 dom W = (Am G)
61, 5syl6eleq 2443 . . 3 (SWTS (Am G))
7 fnbrfvb 5359 . . . . . . 7 ((W Fn (Am G) S (Am G)) → ((WS) = TSWT))
83, 7mpan 651 . . . . . 6 (S (Am G) → ((WS) = TSWT))
9 vex 2863 . . . . . . . . 9 r V
10 coexg 4750 . . . . . . . . 9 ((r V S (Am G)) → (r S) V)
119, 10mpan 651 . . . . . . . 8 (S (Am G) → (r S) V)
12 coeq2 4876 . . . . . . . . 9 (s = S → (r s) = (r S))
1312, 2fvmptg 5699 . . . . . . . 8 ((S (Am G) (r S) V) → (WS) = (r S))
1411, 13mpdan 649 . . . . . . 7 (S (Am G) → (WS) = (r S))
1514eqeq1d 2361 . . . . . 6 (S (Am G) → ((WS) = T ↔ (r S) = T))
168, 15bitr3d 246 . . . . 5 (S (Am G) → (SWT ↔ (r S) = T))
1716biimpd 198 . . . 4 (S (Am G) → (SWT → (r S) = T))
186, 17mpcom 32 . . 3 (SWT → (r S) = T)
196, 18jca 518 . 2 (SWT → (S (Am G) (r S) = T))
20 coass 5098 . . . . 5 ((r r) S) = (r (r S))
21 f1ococnv1 5311 . . . . . . 7 (r:A1-1-ontoB → (r r) = ( I A))
2221coeq1d 4879 . . . . . 6 (r:A1-1-ontoB → ((r r) S) = (( I A) S))
23 elmapi 6017 . . . . . . 7 (S (Am G) → S:G–→A)
24 fcoi2 5242 . . . . . . 7 (S:G–→A → (( I A) S) = S)
2523, 24syl 15 . . . . . 6 (S (Am G) → (( I A) S) = S)
2622, 25sylan9eq 2405 . . . . 5 ((r:A1-1-ontoB S (Am G)) → ((r r) S) = S)
2720, 26syl5reqr 2400 . . . 4 ((r:A1-1-ontoB S (Am G)) → S = (r (r S)))
28 coeq2 4876 . . . . 5 ((r S) = T → (r (r S)) = (r T))
2928eqeq2d 2364 . . . 4 ((r S) = T → (S = (r (r S)) ↔ S = (r T)))
3027, 29syl5ibcom 211 . . 3 ((r:A1-1-ontoB S (Am G)) → ((r S) = TS = (r T)))
3130expimpd 586 . 2 (r:A1-1-ontoB → ((S (Am G) (r S) = T) → S = (r T)))
3219, 31syl5 28 1 (r:A1-1-ontoB → (SWTS = (r T)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  Vcvv 2860   class class class wbr 4640   ccom 4722   I cid 4764  ccnv 4772  dom cdm 4773   cres 4775   Fn wfn 4777  –→wf 4778  1-1-ontowf1o 4781  cfv 4782  (class class class)co 5526   cmpt 5652  m cmap 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-map 6002
This theorem is referenced by:  enmap1lem4  6073
  Copyright terms: Public domain W3C validator