![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > syl6eq | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6eq.1 | ⊢ (φ → A = B) |
syl6eq.2 | ⊢ B = C |
Ref | Expression |
---|---|
syl6eq | ⊢ (φ → A = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eq.1 | . 2 ⊢ (φ → A = B) | |
2 | syl6eq.2 | . . 3 ⊢ B = C | |
3 | 2 | a1i 10 | . 2 ⊢ (φ → B = C) |
4 | 1, 3 | eqtrd 2385 | 1 ⊢ (φ → A = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: syl6req 2402 syl6eqr 2403 3eqtr3g 2408 3eqtr4a 2411 cbvralcsf 3198 cbvreucsf 3200 cbvrabcsf 3201 un00 3586 disjssun 3608 diftpsn3 3849 intsng 3961 uniintsn 3963 rint0 3966 iinrab2 4029 riin0 4039 iununi 4050 prprc2 4122 preq12b 4127 pw10b 4166 uniabio 4349 iotanul 4354 dfiota4 4372 nnsucelr 4428 addcnnul 4453 preaddccan2 4455 ncfinraise 4481 tfin11 4493 tfindi 4496 tfinsuc 4498 tfinltfinlem1 4500 tfinltfin 4501 evenodddisj 4516 eventfin 4517 oddtfin 4518 nnadjoin 4520 nnpweq 4523 sfin01 4528 sfintfin 4532 tfinnn 4534 1cvsfin 4542 vfinncvntnn 4548 dmxpid 4924 resiima 5012 xpnz 5045 xpdisj1 5047 xpdisj2 5048 resdisj 5050 dmxpss 5052 rnxpid 5054 xpcan 5057 xpcan2 5058 dmsnopss 5067 cnvresid 5166 funcnvres2 5167 funimacnv 5168 fcoi2 5241 f1o00 5317 funfv 5375 funfv2 5376 funfv2f 5377 fvun1 5379 fvunsn 5444 fvpr1 5449 fconst5 5455 op1std 5522 op2ndd 5523 fnrnov 5605 fvmpt2i 5703 pw1fnval 5851 pw1fnf1o 5855 ecexr 5950 map0e 6023 enmap2lem3 6065 enmap2lem5 6067 ncdisjun 6136 1cnc 6139 muc0 6142 ce0nnul 6177 ce0nulnc 6184 ce2 6192 lectr 6211 leaddc1 6214 addceq0 6219 taddc 6229 letc 6231 tce2 6236 te0c 6237 ce0lenc1 6239 tlenc1c 6240 brtcfn 6246 nclenn 6249 ncslesuc 6267 nmembers1 6271 nncdiv3 6277 nnc3n3p1 6278 nchoicelem2 6290 nchoicelem7 6295 nchoicelem17 6305 frecxp 6314 |
Copyright terms: Public domain | W3C validator |